En
  • دکتری (1374)

    ریاضی

    دانشگاه تربیت مدرس،

  • کارشناسی‌ارشد (1370)

    ریاضی محض

    دانشگاه تربیت مدرس،

  • کارشناسی (1367)

    ریاضی کاربردی

    دانشگاه شیراز،

  • نظریه گروهها و كاربرد آن
  • نظریه جبری ابرساختارها
  • نظریه نمایش و سرشت گروه های متناهی
  • نظریه گراف محاسباتی و ریاضیات زیستی
  • نانو مجاسبات
  • ریاضی-شیمی

    دکتر علی ایرانمنش دارای مدرک کارشناسی ریاضی کاربردی از دانشگاه شیراز و کارشناسی ارشد و دکتری ریاضی محض از دانشگاه تربیت مدرس است. وی از سال 1374 به عنوان عضو هیأت علمی فعالیت خود در دانشگاه را آغاز کرد و هم‌اکنون با رتبه علمی استاد تمام در گروه ریاضی محض دانشکده علوم ریاضی مشغول تدریس و پژوهش است. وی مؤلف 10 کتاب به زبان فارسی، بوده و در تألیف برخی از فصول 10 کتاب انگلیسی که توسط انتشارات معتبر بین‌المللی از جمله اشپرینگر منتشر شده، نقش داشته است. تا کنون نزدیک به 250مقاله به قلم دکتر ایرانمنش در مجلات معتبر بین‌المللی و داخلی به چاپ رسیده و وی در 6 رساله پسا دکتری، 35 رساله دکتری و 90 پایان‌نامه کارشناسی ارشد به عنوان استاد راهنما حضور داشته است و 29 مورد طرح پژوهشی خاتمه یافته (دانشگاهی-بین دانشگاهی-ملی-بین المللی) در کارنامه علمی خود دارد. عضویت در انجمن ریاضی ایران، انجمن ریاضی آمریکا، انجمن ریاضی لندن، انجمن ریاضی اروپا و انجمن ریاضی-شیمی اروپا، همچنین عناوین استاد نمونه کشوری در سال 1399 ، پژوهشگر برتر گروه علوم پایه کشور در سال 1391، رتبه چهارم کشوری در سومین چشنواره برترین های فناوری نانو سال 1389 و استاد نمونه بسیجی کشور در سال 1389 از جمله افتخارات و فعالیت‌های دکتر ایرانمنش در عرصه علوم ریاضی است. علایق تحقیقاتی او شامل نظریه نمایش و سرشت گروه های متناهی، تشخیص پذیری گروه های متناهی، شیمی ریاضی، نظریه ابرساختارها، نظریه گراف جبری، ترکیبیات، نظریه گراف محاسباتی و ریاضیات زیستی است.

    ارتباط

    رزومه

    On cut vertices and eigenvalues of character graphs of solvable groups

    Roghayeh Hafezieh, Mohammad Ali Hosseinzadeh, Samaneh Hossein-Zadeh, Ali Iranmanesh
    Journal PapersDiscrete Applied Mathematics , 2021 February 3, {Pages }

    Abstract

    Given a finite group G, the character graph, denoted by Δ (G), for its irreducible character degrees is a graph with vertex set ρ (G) which is the set of prime numbers that divide the irreducible character degrees of G, and with {p, q} being an edge if there exists a non-linear χ∈ Irr (G) whose degree is divisible by p q. In this paper, on one hand, we proceed by discussing the graphical shape of Δ (G) when it has cut vertices or small number of eigenvalues, and on the other hand we give some results on the group structure of G with such Δ (G). Recently, Lewis and Meng proved the character graph of each solvable group has at most one cut vertex. Now, we determine the structure of character graphs of solvable groups with a cut vertex

    On the Roman -domatic number of graphs

    A Giahtazeh, HR Maimani, A Iranmanesh
    Journal Papers , , {Pages }

    Abstract

    Action of automorphisms on irreducible characters of groups of type\textsf {A}

    F Shirjian, A Iranmanesh
    Journal Papers , , {Pages }

    Abstract

    ON THE EMBEDDING OF GROUPS AND DESIGNS IN A DIFFERENCE BLOCK DESIGN

    MT Masouleh, A Iranmanesh, H Koppelaar
    Journal Papers , , {Pages }

    Abstract

    ON GENERALIZED RELATIVE COMMUTATIVITY DEGREE OF FINITE MOUFANG LOOP

    H Hasanzadeh, A Iranmanesh, B Azizi
    Journal Papers , , {Pages }

    Abstract

    Complex group algebras of almost simple unitary groups

    Farrokh Shirjian, Ali Iranmanesh, Farideh Shafiei
    Journal PapersCommunications in Algebra , 2020 January 13, {Pages 22-Jan }

    Abstract

    The aim of this article is to contribute to a question of R. Brauer that “when do non-isomorphic groups have isomorphic complex group algebras?” Let H and G be finite groups where and let denote the first column of the complex character table of H. In this article, we show that if then provided that q + 1 divides neither n nor n – 1. Consequently, it is shown that G is uniquely determined by the structure of its complex group algebra. This in particular extends a recent result of Bessenrodt et?al. [Algebra Number Theory 9 (2015), 601–628] to the almost simple groups of arbitrary rank.

    A Variation of Thompson’S Conjecture for the Symmetric Groups

    Mahdi Abedei, Ali Iranmanesh, Farrokh Shirjian
    Journal PapersCzechoslovak Mathematical Journal , 2020 January 29, {Pages 13-Jan }

    Abstract

    Let G be a finite group and let N (G) denote the set of conjugacy class sizes of G. Thompson’s conjecture states that if G is a centerless group and S is a non-abelian simple group satisfying N (G)= N (S), then G≅ S. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that G≅ Sym (p+ 1) if and only if| G|=(p+ 1)! and G has a special conjugacy class of size (p+ 1)!/p, where p> 5 is a prime number. Consequently, if G is a centerless group with N (G)= N (Sym (p+ 1)), then G≅ Sym (p+ 1).

    Wiener Index of Edge Thorny Graphs of Catacondensed Benzenoids

    Andrey A Dobrynin, Ali Iranmanesh
    Journal PapersMathematics , Volume 8 , Issue 4, 2020 April , {Pages 467 }

    Abstract

    The Wiener index is a topological index of a molecular graph, defined as the sum of distances between all pairs of its vertices. Benzenoid graphs include molecular graphs of polycyclic aromatic hydrocarbons. An edge thorny graph G is constructed from a catacondensed benzenoid graph H by attaching new graphs to edges of a perfect matching of H. A formula for the Wiener index of G is derived. The index of the resulting graph does not contain distance characteristics of elements of H and depends on the Wiener index of H and distance properties of the attached graphs.

    On Graph–Based Data Structures to Multiple Genome Alignment

    Nafiseh Jafarzadeh, Ali Iranmanesh
    Journal Papers , Volume 83 , Issue 1, 2020 January 1, {Pages 33-62 }

    Abstract

    The rapid increment of biological sequences in next generation sequencing (NGS) techniques has highlighted the key role of multiple genome alignment in comparative structure and function analysis of biological sequences. Sequence alignment is usually the first step

    CHARACTER TABLE GROUPS AND EXTRACTED SIMPLE AND CYCLIC POLYGROUPS

    Sara Sekhavatizadeh, Mohammad Mehdi Zahedi, Ali Iranmanesh
    Journal PapersJournal of the Indonesian Mathematical Society , Volume 26 , Issue 1, 2020 March 1, {Pages 22-36 }

    Abstract

    Let be a finite group and be the set of all irreducible complex characters of In this paper, we consider as a polygroup, where for each the product is the set of those irreducible constituents which appear in the element wise product We call that simple if it has no proper normal subpolygroup and

    supercharacter table of certain finite groups

    Hadiseh Saydi, Mohammad Reza Darafsheh, Ali Iranmanesh
    Journal PapersarXiv preprint arXiv:2002.09855 , 2020 February 23, {Pages }

    Abstract

    Supercharacter theory is developed by P. Diaconis and IM Isaacs as a natural generalization of the classical ordinary character theory. Some classical sums of number theory appear as supercharacters which are obtained by the action of certain subgroups of GLd (Zn) on Zdn. In this paper we take Zdp, p prime, and by the action of certain subgroups of GLd (Zp) we find supercharacter table of Zdp.

    Extending Huppert’s conjecture to almost simple groups of Lie type

    Farrokh Shirjian, Ali Iranmanesh
    Journal PapersIllinois Journal of Mathematics , Volume 64 , Issue 1, 2020 January , {Pages 49-69 }

    Abstract

    Let G be a finite group and cd (G) be the set of all irreducible complex character degrees of G without multiplicities. The aim of this paper is to propose an extension of Huppert’s conjecture from non-Abelian simple groups to almost simple groups of Lie type. Indeed, we conjecture that if H is an almost simple group of Lie type with cd (G)= cd (H), then there exists an Abelian normal subgroup A of G such that G/A≅ H. It is furthermore shown that G is not necessarily the direct product of H and A. In view of Huppert’s conjecture, we also show that the converse implication does not necessarily hold for almost simple groups. Finally, in support of this conjecture, we will confirm it for projective general linear and unitary groups of di

    Atom-Bond Connectivity Index

    Mahdieh Azari, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 18-Jan }

    Abstract

    Mathematical chemistry is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. Chemical graphs, particularly molecular graphs, are models of molecules in which atoms are represented by vertices and chemical bonds by edges of a graph. Physico-chemical or biological properties of molecules can be predicted by using the information encoded in the molecular graphs, eventually translated in the adjacency or connectivity matrix associated to these graphs. The bounds of a topological index are important information of a molecular graph in the sense that they establish the approximate range of the index in terms of molecular structural pa

    Distance Algorithm in Chemical Graphs

    Yaser Alizadeh, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 161-169 }

    Abstract

    The core of computer science is algorithms. An algorithm is a set of instructions for solving a problem. The word “algorithm” is a distortion of al-Khwarizmi, a Persian mathematician who wrote an influential treatise about algebraic methods. Some algorithms were proposed to compute topological indices based on distance. These are the so-called shortest path algorithms, and in general, solve even more complicated problems where edges are allowed to carry weights. Some of the well-known algorithms to compute the Wiener index is the Floyd-Warshall algorithm. Many methods and algorithms, for computing the topological indices of a graph, were proposed. In a series of papers, the algorithms for calculating some topological indices, based on d

    Eccentric Distance Sum

    Mahdieh Azari, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 171-179 }

    Abstract

    Chemical graphs, particularly molecular graphs, are models of molecules in which atoms are represented by vertices and chemical bonds by edges of a graph. A graph invariant is any function calculated on a molecular graph irrespective of the labeling of its vertices. The values of the eccentric distance sum of each analog in the data set were computed and active range identified. Subsequently, biological activity was assigned to each analog in the data set, which was then compared with the reported anti-HIV activity of dihydroseselin analogs. Excellent correlations were obtained using the eccentric distance sum in all six data sets employed in Gupta et al. Correlation percentages ranging from 93% to more than 99% were obtained in data sets u

    Q-Wiener Index

    Asma Hamzeh, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 367-373 }

    Abstract

    The Wiener index is the sum of distances between all pairs of vertices of a connected graph. q-Analogs find applications in a number of areas, including the study of fractals and multifractal measures, and expressions for the entropy of chaotic dynamical systems. q-Analogs also appear in the study of quantum groups and in q-deformed superalgebras. q-Analogs of the Wiener index, motivated by the theory of hypergeometric series. Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the most widely known topological descriptor, the Wiener index, and used it to determine physical properties of types of alkanes known as paraffin. q-Analogs find applications in a number of areas, including the study of fract

    Zagreb Indices

    Asma Hamzeh, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 505-513 }

    Abstract

    Graph theory has provided chemists with a variety of very useful tools, and one of such tools is the topological indices. In the field of chemical graph theory and mathematical chemistry, a topological index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Among the oldest and most famous topological index, the first and the second are Zagreb indices. Zagreb indices possess many interesting properties. This chapter provides some results of Zagreb indices, for chemical graphs and nanostructures. The Zagreb indices and their variants have been used to study molecular complexity chirality, ZE-isomerism and heterosystems whilst the overall Zagreb indic

    Geometric-Arithmetic Index

    Mahdieh Azari, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 227-248 }

    Abstract

    Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of molecular structures using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena. The GA index was first introduced in a paper by Vukicevic and Furtula published in the Journal of Mathematical Chemistry as one of the successors of the Randic connectivity index. This index was named as geometric-arithmetic index, it consists of a geometrical mean of end-vertex degrees of an edge uv, dudv, as numerator and arithmetic mean of end-vertex degrees of the edge uv,(d u+ d v)/2, as denominator. A descriptor

    Degree Distance

    Asma Hamzeh, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 155-160 }

    Abstract

    The degree distance seems to have been considered first in connection with certain chemical applications by Dobrynin and Kochetova (1994) and at the same time by Gutman (1994), who named it the Schultz index. For chemists, the use of computing tools became an obligation in order to manipulate molecular information that were, during the last years, numerically stocked on computers in databases with huge quantities. Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling of chemical phenomena. T

    Topological Indices of C10n Fullerene

    Yaser Alizade, Ali Iranmanesh
    Journal Papers , 2020 May 6, {Pages 447-451 }

    Abstract

    The discovery of fullerenes greatly expanded the number of known carbon allotropes, which until recently were limited to graphite, diamond, and amorphous carbon such as soot and charcoal. Topological indices are used for example in biological activities or physic-chemical properties of alkenes which are correlated with their chemical structure. In a series of papers topological indices of fullerenes were studied. As an example, topological indices such as the Wiener index, the Szeged index, edge Wiener index, PI v index and eccentric connectivity index of the family of C 10n fullerenes are computed. Many properties of fullerene molecules can be studied using mathematical tools and results. Fullerene graphs were defined as cubic (ie, 3-regul

    دروس نیمسال جاری

    • كارشناسي ارشد
      نظريه نمايش گروهها ( واحد)
      دانشکده علوم ریاضی، گروه رياضي محض

    دروس نیمسال قبل

    • دكتري
      گروههاي خطي ( واحد)
      دانشکده علوم ریاضی، گروه رياضي محض
    • نفيسه السادات , جعفرزاده
    • 1397
      زارعي سهاميه, فهيمه
      استفاده از كد هاي خطي براي نوشتن كد هاي ژنتيكي
    • 1397
      عابديني مقانكي, سعيده
    • 1393
      نخبه روستا, اعظم
      گروه هاي جديد به دست آمده از پلي گروه ها وبررسي برخي از خواص آنها از جمله حل پذيري و پوچتواني
    • 1395
      مددي مقدم, صفورا
    • 1395
      بهي زادي, كيميا
    • 1396
      صيدي, حديثه
    • مدیر امور دانشجویی
    • عضو هیات ممیزه دانشگاه تربیت مدرس
    • عضو هیات ممیزه دانشگاه آزاد اسلامی
    • عضو هیات تحریریه مجله بین المللی نظریه گروهها
    • رئیس دانشکده علوم ریاضی
    • رئیس دانشکده علوم پایه
    • سردبیر مجله علمی پژوهشی IJMSI
    • رئیس بخش ریاضی دانشکده علوم پایه
    • استاد نمونه کشوری در سال 1399 - استاد نمونه بسیجی کشور در سال 1389 - پژوهشگر برتر علوم پایه کشور در سال 1391 - رتبه چهارم کشوری در سومین چشنواره برترین های فناوری نانو سال 1389

    مهم

    جدید

      اطلاعیه ای درج نشده است