
Simulation
for the
Social
Scientist

Nigel Gi lbert

Klaus G. Troitzsch

second edit ion

SSIIMMUULLAATTIIOONN FFOORR TTHHEE SSOOCCIIAALL SSCCIIEENNTTIISSTT
SSeeccoonndd EEddiittiioonn

• What can computer simulation contribute to the social sciences?
• Which of the many approaches to simulation would be best for my social

science project?
• How do I design, carry out and analyse the results from a computer

simulation?

Interest in social simulation has been growing rapidly worldwide as a result
of increasingly powerful hardware and software and a rising interest in the
application of ideas of complexity, evolution, adaptation and chaos in the
social sciences. Simulation for the Social Scientist is a practical textbook on
the techniques of building computer simulations to assist understanding of
social and economic issues and problems.

This authoritative book details all the common approaches to social
simulation to provide social scientists with an appreciation of the literature
and allow those with some programming skills to create their own
simulations.

New for this edition:
• A new chapter on designing multi-agent systems to support the fact that

multi-agent modelling has become the most common approach to
simulation

• New examples and guides to current software
• Updated throughout to take new approaches into account

The book is an essential tool for social scientists in a wide range of fields,
particularly sociology, economics, anthropology, geography, organizational
theory, political science, social policy, cognitive psychology and cognitive
science. It will also appeal to computer scientists interested in distributed
artificial intelligence, multi-agent systems and agent technologies.

NNiiggeell GGiillbbeerrtt is Professor of Sociology at the University of Surrey, UK. He
is editor of the Journal of Artificial Societies and Social Simulation and has
long experience of using simulation for research in sociology, environmental
resource management, science policy and archaeology. His previous
textbooks include Understanding Social Statistics (2000) and Researching
Social Life (2001).

KKllaauuss GG.. TTrrooiittzzsscchh is Professor of Social Science Informatics at the University
of Koblenz-Landau, Germany. He has written extensively in sociology and
political science and pioneered the application of simulation to the social
sciences in Germany.

� ������ ��	���

�����������	����

Sim
ulation for the Social Scientist

G
ilb

ert • T
ro

itzsch

second
edition

GilbertTroit005pb17.5.qxd 1/27/2007 10:52 AM Page 1

Simulation for the Social Scientist

Second Edition

Simulation for the Social Scientist

Second Edition

Nigel Gilbert and Klaus G. Troitzsch

Open University Press

Open University Press
McGraw-Hill Education
McGraw-Hill House
Shoppenhangers Road
Maidenhead
Berkshire
England
SL6 2QL

email: enquiries@openup.co.uk
World Wide Web: www.openup.co.uk

and Two Penn Plaza, New York, NY 10121-2289, USA

First published 2005

Copyright c© Nigel Gilbert and Klaus G. Troitzsch 2005

All rights reserved. Except for the quotation of short passages for the purposes of criticism
and review, no part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording
or otherwise, without prior written permission of the publisher or a licence from the
Copyright Licensing Agency Limited. Details of such licences (for reprographic
reproduction) may be obtained from the Copyright Licensing Agency Ltd of 90 Tottenham
Court Road, London, W1T 4LP.

A catalogue record of this book is available from the British Library.
CIP data applied for.

ISBN-13 978 0335 21600 0 (pb) 978 0335 21201 7 (hb)
ISBN-10 0 335 21600 5 (pb) 0 335 21601 3 (hb)

Typeset by the authors with LATEX 2ε

Printed in Great Britain by Bell & Bain Ltd, Glasgow

Contents

Preface ix

1 Simulation and social science 1
What is simulation? . 2
The history of social science simulation6
Simulating human societies .10
Conclusion .13

2 Simulation as a method 15
The logic of simulation .16
The stages of simulation-based research18
Conclusion .26

3 System dynamics and world models 28
Software .31
An example: doves, hawks and law-abiders32
Commentary .44
World models .45
Problems and an outlook .50
Further reading .54

4 Microanalytical simulation models 57
Methodologies .60
Software .65
Examples .66

vi Contents

Commentary .75
Further reading .76

5 Queuing models 79
Characteristics of queuing models80
Software .86
Examples .87
Commentary .97
Further reading .98

6 Multilevel simulation models 100
Some synergetics .102
Software: MIMOSE .107
Examples .113
Commentary .127
Further reading .128

7 Cellular automata 130
The Game of Life .131
Other cellular automata models134
Extensions to the basic model .145
Software .151
Further reading .169

8 Multi-agent models 172
Agents and agency .173
Agent architecture .178
Building multi-agent simulations182
Examples of multi-agent modelling190
Further reading .197

9 Developing multi-agent systems 199
Making a start .200
From theory to model .202
Adding dynamics .207
Cognitive models .209
The user interface .210
Unit tests .211

Contents vii

Debugging .212
Using multi-agent simulations214
Conclusion .215
Further reading .215

10 Learning and evolutionary models 217
Artificial neural networks .219
Using artificial neural networks for social simulation222
Designing neural networks .227
Evolutionary computation .230
Further reading .253

Appendix A Web sites 256
General .256
Programs, packages and languages256
Electronic journals .260
System dynamics .260
Microsimulation .261
Queuing models .263
Cellular automata .264
Multi-agent systems .265
Neural networks .265
Evolutionary computation .266

Appendix B Linear stability analysis of the dove–hawk–law-
abider model 267

Appendix C Random number generators 272

References 275

Author index 287

Subject index 291

Preface

This book is a practical guide to the exploration and understanding of social
and economic issues through simulation. It explains why one might use
simulation in the social sciences and outlines a number of approaches to
social simulation at a level of detail that should enable readers to understand
the literature and to develop their own simulations.

Interest in social simulation has been growing rapidly world-wide,
mainly as a result of the increasing availability of powerful personal com-
puters. The field has also been much influenced by developments in the
theory of cellular automata (from physics and mathematics) and in computer
science (distributed artificial intelligence and agent technology). These have
provided tools readily applicable to social simulation. Although the book
is aimed primarily at scholars and postgraduates in the social sciences, it
may also be of interest to computer scientists and to hobbyists with an
interest in the topic. We assume an elementary knowledge of programming
(for example, experience of writing simple programs in Basic) and some
knowledge of the social and economic sciences.

The impetus for the book stems from our own research and the world-
wide interest in simulation demonstrated by, for instance, the series of
conferences on Simulating Societies held since 1992. The proceedings of
the first two of these have been published asSimulating Societies(Gilbert
and Doran 1994) andArtificial Societies(Gilbert and Conte 1995) and
subsequent papers have appeared in theJournal of Artificial Societies and
Social Simulation.

Since we wrote the first edition of this book in 1997–8, interest in social

x Preface

simulation has been growing even more rapidly, and a number of friends
and colleagues encouraged us to update the text. Hints about what could be
improved came from participants of annual summer workshops that we have
been organizing since September 2000 and from participants of advanced
simulation workshops which we have been organizing since April 2003, both
of which we plan to continue. The Simulating Societies conference series
became part of the annual conferences of the newly founded European Social
Simulation Association.

The book starts with an introduction describing the opportunities for us-
ing simulation to understand and explain social phenomena. We emphasize
that simulation needs to be a theory-guided enterprise and that the results
of simulation will often be the development of explanations, rather than the
prediction of specific outcomes. Chapter 2 sets out a general methodology
for simulation, outlining the typical stages through which simulation models
pass. The remainder of the book considers seven approaches to simulation.
Most of the chapters follow the same format: a summary of the approach,
including an introduction to its historical development; a description of a
representative software package supporting the approach; an explanation
of the process of model specification, coding, running a simulation and
interpretation of the results; and descriptions of examples of the approach
to be found in the research literature. Each chapter concludes with an an-
notated bibliography. The approaches considered are: system dynamics and
world models; microanalytical simulation models; queuing models; multi-
level simulation; cellular automata; multi-agent modelling; and learning and
evolutionary models. This second edition includes a new chapter (Chapter
9), which offers additional advice on how to design and build multi-agent
models.

This book would not have been started and, even less, revised, without
the encouragement of a world-wide network of friends and colleagues who
find the field of social simulation as fascinating as we do and who regularly
provide excuses for us to sample antiquities in Italy, cuisine in Paris, tapas in
Catalonia, the architecture of ancient German university towns, the culinary
specialties of Dnipropetrovs’k in the Ukraine, and the rolling countryside
of England, not forgetting the adobe houses of Santa Fe, New Mexico and
the castle of Kazimierz Dolny on the Vistula River in Poland. This book is
dedicated to this virtual community – and to our wives, who are now used to
seeing us hunched over computers, day in and day out.

We thank Edmund Chattoe, Georg Müller, Silke Reimer, Claudio Cioffi-
Revilla, Sean Luke, Wander Jager, Michael Möhring and a number of stu-
dents of our universities, including Alan Roach, Matthijs den Besten, Anna

Preface xi

Katharina Weber and Lu Yang for their comments, and Sue Hadden, Justin
Vaughan, Mark Barratt and Jennifer Harvey of the Open University Press for
their help with the preparation of the manuscript.

Nigel Gilbert
September 2004 Klaus G. Troitzsch

Chapter 1

Simulation and social science

Using computer simulation in the social sciences is a rather new idea –
although the first examples date from the 1960s, simulation only began to
be used widely in the 1990s – but one that has enormous potential. This
is because simulation is an excellent way of modelling and understanding
social processes.

This book has been written for social scientists interested in building
simulations. All research should be theoretically informed, methodologically
sophisticated and creative. These qualities are especially necessary when
doing simulations because the field is only about 20 years old, so there
are no well-established traditions to rely on, and there are a wide variety
of approaches to simulation from which to choose. One additional skill
needed by the researcher wanting to use simulation is some facility in using
computers (all simulations nowadays are run on computers). It helps to know
how to write simple programs, although the first half of this book does not
demand any programming knowledge at all, and the second half needs only
a beginner’s level of skill.

Simulation introduces the possibility of a new way of thinking about
social and economic processes, based on ideas about the emergence of
complex behaviour from relatively simple activities (Simon 1996). These
ideas, which are gaining currency not only in the social sciences but also
in physics and biology, go under the name of complexity theory (see, by
way of introduction, Waldrop 1992). However, we do not consider the
theoretical implications of simulation in any depth in this book although
there are frequent references to the theoretical foundations. Instead, the book

2 Simulation and social science

focuses on the practical and methodological issues of how to do simulation,
covering matters such as the approach to adopt, the stages one should expect
to go through and the traps and difficulties to avoid. In this first chapter,
we discuss the types of problem and purposes for which simulation is best
suited, present a few examples of simulation as it is used in social science
and develop a classification of the types of simulation that will be described
later in the book.

What is simulation?

Simulation is a particular type of modelling. Building a model is a well-
recognized way of understanding the world: something we do all the time,
but which science and social science has refined and formalized. A model is
a simplification – smaller, less detailed, less complex, or all of these together
– of some other structure or system. A model aeroplane is recognizably an
aeroplane, even if it is much smaller than a real aeroplane and has none of
its complex control systems. More relevant to social science are statistical
models which are used to predict the values of dependent variables. Chapter
2 describes the idea of modelling and the differences between statistical
models and simulation models in detail.

Like statistical models, simulations have ‘inputs’ entered by the re-
searcher and ‘outputs’ which are observed as the simulation runs. Often, the
inputs are the attributes needed to make the model match up with some spe-
cific social setting and the outputs are the behaviours of the model through
time. An example – based loosely on the work of Todd (1997) – may make
this clearer. Suppose that we are interested in how people choose a marriage
partner. Do you (perhaps, did you?) keep looking and dating until you found
someone who meets all your romantic ideals, or do you stop as soon as you
find someone ‘good enough’? Do people use a sufficiently rigorous search
procedure or, as Frey and Eichenberger (1996) suggest, should they search
longer, possibly reducing the divorce rate as a result?

Asking people about their searching behaviour is unlikely to be very
helpful: they may not be following any conscious strategy and may not reveal
it even if they do have one. Instead, we might set up a model (in this case,
a computer program) which embodies some plausible assumptions and see
what happens, comparing the behaviour of the program with the observed
patterns of searching for a partner.

This example is typical in several ways of how simulations can be used.

What is simulation? 3

• When we have a theory of how people choose mates, we can express
it in the form of a procedure and ultimately in the form of a computer
program. The program will be much more precise than the textual
form of the procedure and is therefore helpful in refining one’s theory.
Simulation can thus be used as amethod of theory development.
• Once the theory is formalized into a program and we have made some

assumptions, the program can be run and the behaviour of the simula-
tion observed. Let us assume that we have a population of simulated
potential suitors, each with a ‘suitability’ score chosen at random.
Suppose further that the simulated person looking for a partner (the
‘agent’) can date potential suitors, selected at random, one after the
other. At the end of every date, the agent has to choose whether to settle
down with that person or break up and go on to date another suitor.
This decision has to be made without knowing about the suitability of
others whom the agent has not yet met and without the possibility of
ever going back to a rejected suitor.

Figure 1.1: The mate searching game

55 116 149 217 117 81 308 193 78 239

85 15 294 110 219 275 151 310 191 75

110 21 23 132 259 264 194 59 273 239

166 254 136 100 172 30 172 288 128 276

94 169 38 208 145 73 147 13 256 280

312 187 158 124 203 264 142 241 192 54

27 216 316 301 0 183 250 112 30 19

189 273 29 111 259 97 256 249 130 13

53 253 15 273 148 6 97 295 22 238

98 141 88 60 279 211 35 160 304 10

Instructions:Cover up the rows of numbers with a piece of paper and gradually reveal
them, starting from the top left corner, working downwards row by row. Wait for a couple
of seconds between revealing each new number (this represents the time you spend dating
your potential partner!). Decide for yourself when you want to stop. The last number you
revealed is the suitability score of the person you would ‘marry’. What is the best strategy to
maximize the score, while minimizing the number of partners you have to date? (Try not to
cheat by looking before you start either at the overall distribution of numbers or how many
numbers there are in all.)

• To get the feel for this, cover up the array of numbers in Figure 1.1

4 Simulation and social science

with a piece of paper and then, moving the paper from left to right,
row by row, gradually reveal more and more numbers. These numbers
represent the suitability of successive dates. Stop whenever you feel
that you have seen enough scores, remembering that if you spend too
long dating you will have missed many years of married bliss!
• The suitability score of the selected partner is the ‘output’ for one run

of the simulation. We can repeat the simulation many times. Since in
the simulation the suitors are given random scores and the agent picks
them in random order, the result may be different for each run, but the
average score over a large number of runs will be useful. We can thus
see that simulation allows the researcher to conduct experiments in a
way that is normally impossible in social science.

Todd (1997) explores a number of possible strategies, including those
that have been proved analytically to be optimal in terms of finding the best
partner, but which require unrealistic amounts of search, and some other
strategies that are much simpler and have better results when one takes
into account that search is expensive in time and effort. He also begins to
investigate the implications for search strategies when there is a possibility
that you might want to settle down with a partner but the partner may still
be wanting to continue to search for someone else. Even in this much more
complex situation, simple strategies seem to suffice.

The uses of simulation

The example of strategies for searching for a partner illustrates one purpose
of simulation: to obtain a betterunderstandingof some features of the
social world. We can observe dating behaviour going on all the time but
the underlying strategies that people use are hard to discover directly, so
simulation can be useful. However, this is not the only value of simulation
(Axelrod 1997a).

Another classic use of simulation is forprediction.If we can develop a
model that faithfully reproduces the dynamics of some behaviour, we can
then simulate the passing of time and thus use the model to ‘look into the
future’. A relatively well-known example is the use of simulation in demo-
graphic research, where one wants to know how the size and age structure
of a country’s population will change over the next few years or decades.
A model incorporating age-specific fertility and mortality rates can be used
to predict population changes a decade into the future with fair accuracy.

What is simulation? 5

Another example is the use of simulations for business forecasting.
A third use of simulation is to develop new tools tosubstitutefor human

capabilities. For example, expert systems (Hayes-Rothet al.1983) have been
constructed to simulate the expertise of professionals such as geologists,
chemists and doctors. These systems can be used by non-experts to carry
out diagnoses which would otherwise require human experts.

These and other simulations have been used fortraining. For exam-
ple, an expert system that classifies rocks according to the likelihood that
valuable minerals will be found in them can be used to train novice ge-
ologists. Flight simulators can be used to train pilots. And simulations of
national economies can be used to train economists (see, for example, the
simulation of the British economy available on the World Wide Web at
http://www.bized.ac.uk/virtual/economy/).

A related use of simulation is forentertainment. Flight simulators are
used not only for training pilots, but also for fun on home personal comput-
ers. Some simulations sold as games are very close to being social simula-
tions of the type described in this book. For example, in Maxis’ SimCity, the
user plays the part of a city mayor and can alter property tax rates and other
parameters to build a simulated city.

The major reason for social scientists becoming increasingly interested
in computer simulation, however, is its potential to assist indiscoveryand
formalization. Social scientists can build very simple models that focus on
some small aspect of the social world and discover the consequences of their
theories in the ‘artificial society’ that they have built. In order to do this, they
need to take theories that have conventionally been expressed in textual form
and formalize them into a specification which can be programmed into a
computer. The process of formalization, which involves being precise about
what the theory means and making sure that it is complete and coherent, is a
very valuable discipline in its own right. In this respect, computer simulation
has a similar role in the social sciences to that of mathematics in the physical
sciences.

Mathematics has sometimes been used as a means of formalization in the
social sciences, but has never become widespread except, perhaps, in some
parts of econometrics. There are several reasons why simulation is more
appropriate for formalizing social science theories than mathematics (Taber
and Timpone 1996). First, programming languages are more expressive and
less abstract than most mathematical techniques, at least those accessible
to non-specialists. Second, programs deal more easily with parallel pro-
cesses and processes without a well-defined order of actions than systems
of mathematical equations. Third, programs are (or can easily be made to

6 Simulation and social science

be) modular, so that major changes can be made in one part without the need
to change other parts of the program. Mathematical systems often lack this
modularity. Finally, it is easy to build simulation systems that include hetero-
geneous agents – for example, to simulate people with different perspectives
on their social worlds, different stocks of knowledge, different capabilities
and so on – while this is usually relatively difficult using mathematics.
Examples in which we compare mathematical and simulation treatments of
a problem can be found in Chapters 3 and 6.

It is the use of simulation for experiment, proof and discovery in the
social sciences which is the major concern of this book.

The history of social science simulation

Computer simulation in the social sciences had a difficult birth (Troitzsch
1997). Although there are isolated earlier examples, the first developments
in computer simulation in the social sciences coincided with the first use of
computers in university research in the early 1960s (Figure 1.2). They mainly
consisted of discrete event simulations or simulations based on system dy-
namics. The former approach, described in Chapter 5, models the passage of
units through queues and processes in order to predict typical throughput –
for example, the waiting time of customers in a queue or the time a city’s po-
lice cars take to reach an emergency (Kolesar and Walker 1975). The system
dynamics approach makes use of large systems of difference equations to
plot the trajectories of variables over time – for example, the Club of Rome
studies of the future of the world economy (Meadowset al. 1974; 1992).
System dynamics and world models are described further in Chapter 3. The
Club of Rome simulations that predicted global environmental catastrophe
made a major impact but also gave simulation an undeservedly poor reputa-
tion as it became clear that the results depended very heavily on the specific
quantitative assumptions made about the model’s parameters. Many of these
assumptions were backed by rather little evidence.

This early work also suffered in another respect: it was focused on pre-
diction, while social scientists tend to be more concerned with understanding
and explanation. This is due to scepticism about the possibility of making
social predictions, based on both the inherent difficulty of doing so and also
the possibility, peculiar to social and economic forecasting, that the forecast
itself will affect the outcome.

One approach that did blossom for some years became known as
‘Simulmatics’ (Sola Pool and Abelson 1962). The Simulmatics project was

The history of social science simulation 7

Figure 1.2: The development of contemporary approaches to simulation in
the social sciences (after Troitzsch 1997)

1900

1940

1950

1960

1970

1980

1990

1700 Differential Equations

Stochastic Processes

Game Theory

Cellular
Automata Artificial

Intelligence

Naive
Physics

System Dynamics

DYNAMO

STELLA

World Dynamics

World Dynamics II

MSM

MICSIM
UMDBS

Queuing
Models

Workflow
Management,
Business
Process
Modelling

Multilevel
Modelling
(MIMOSE)

Synergetics

sCA

Multi
Agent
Models

QSIM

Legend: grey shaded area: equation based models; white
area: object, event or agent based models; ‘sCA’ means cel-
lular automata used for social science simulation; the other
names of tools are explained in the respective chapters

originally designed to advise John F. Kennedy’s presidential campaign. It
tried to predict the reactions of voters to the measures taken by Kennedy
and his campaign team, and was also used to understand voters’ behaviours
in the referendum campaigns about the fluoridation of drinking water, which
were frequent in the United States in the early 1960s (Abelson and Bernstein
1963). The latter project was very similar to present-day multi-agent simu-
lation (the term was only coined some 20 years later). Fifty simulated indi-
viduals were exposed to information about the topic of the referendum from
several different channels and additionally exchanged information among
themselves. How much information they absorbed and how much of this
led to attitude change depended on their simulated communication habits,

8 Simulation and social science

but above all on their current attitudes (for example, the more extreme their
current attitude was, the less susceptible they were to new information). The
whole model included 51 rules of this kind, of which 22 refer to communica-
tion channels and other sources of information and 27 concern information
exchange among the simulated individuals (the remaining two determine the
ballot cast at the end of the simulated campaign).

Another approach that has thrived for more than two decades, impelled
by policy concerns, is rather misleadingly called ‘microsimulation’ (Orcutt
et al. 1986; Harding 1990). This is a very specific technique, yet until
recently was the only form of simulation that had widespread recognition
within the social sciences. Microsimulation, described in Chapter 4, is based
on a large random sample of a population of individuals, households or firms.
Each unit is ‘aged’ using a set of transition probabilities, which determine the
chance that the unit will undergo some change during the passage of a year
(for example, the probability that a woman within a certain age range will
give birth to a child). After every unit has been aged by one year, the process
is repeated for the next year, thus advancing the sample through simulated
time. Aggregate statistics can be calculated and used as estimates of the
future characteristics of the population. Microsimulation has become well
established in some parts of the world (particularly in Germany, Australia
and Canada) where its results have been influential in devising policies for
state pensions, graduate taxes and so on.

Microsimulation has some characteristics that are instructive when com-
pared with other approaches to simulation. First, it has no pretensions to
explanation: it is simply a means of predicting future fiscal distributions.
Second, it treats each unit (person, household or firm) individually: there is
no attempt to model interactions between units. Third, the motivations or
intentions of the units are disregarded: each unit develops from year to year
only in response to the throw of the dice represented by a random number
generator.

Apart from microsimulation, little was heard about simulation during
the 1980s, in marked contrast to the situation in the natural sciences where
simulation is now a basic methodological tool. However, in the early 1990s
the situation changed radically, mainly as a result of the development of
multi-agent models which offered the promise of simulating autonomous
individuals and the interactions between them. These opportunities came
from techniques imported from the study of nonlinear dynamics and from
artificial intelligence research.

Physicists and mathematicians had been trying to understand the prop-
erties of large aggregates of matter and had devised models called cellular

The history of social science simulation 9

automata to do so. These models have been applied to explain the properties
of magnetic materials, turbulent flow in liquids, crystal growth, soil erosion
and in many other areas of science (Toffoli and Margolus 1987). In all
these cases, the properties of the material as a whole can be modelled by
simulating the interactions between the component units (molecules, soil
particles or whatever). Cellular automata consist of a large grid of cells in a
regular arrangement. Each cell can be in one of a small number of states and
changes between these states occur according to rules which depend only
on the states of the cell’s immediate neighbours. Cellular automata form a
useful framework for some models of social interaction, for example the
spread of gossip between people and the formation of ethnically segregated
neighbourhoods. They are described in more detail in Chapter 7.

Another approach that has been influenced by ideas from physics is
multilevel modelling (Chapter 6) which has taken its inspiration from the
theory of synergetics, originally developed for application to condensed
matter physics.

Artificial intelligence is an area of computer science concerned with
the development of simulations of human intelligence and with building
tools which exhibit some of the characteristics of intelligent behaviour. Until
recently, artificial intelligence had only been involved with modelling indi-
vidual cognition, but in the 1980s there was increasing interest in distributed
artificial intelligence, a field which examines the properties of interacting
artificial intelligence programs. With the growth of the Internet and the
World Wide Web, many artificial intelligence researchers became interested
in software ‘agents’, programs that can receive or collect information from
other computers, assess it in the light of their past experience and decide
what action to take (Doran 1997a). Both distributed artificial intelligence
and the agent technology strands of research developed models which, be-
cause they involved interacting autonomous agents, could be applied to the
simulation of human societies. Distributed artificial intelligence and multi-
agent systems are discussed in Chapter 8. Chapter 9 considers strategies and
techniques for designing multi-agent models.

Artificial intelligence researchers have also devoted a great deal of at-
tention over the last decade to techniques of ‘machine learning’ (Michalski
et al. 1983), which allow computer programs to increase their knowledge
and their procedural skills by learning from experience. Models with the
ability to learn are very useful both for simulating the cognitive processes of
individuals and for modelling whole societies which adapt over time to new
circumstances. Chapter 10 discusses some approaches to modelling learning
and their application to social simulation.

10 Simulation and social science

Simulating human societies

This brief history of social science simulation research indicates that several
of the approaches used in contemporary social simulation were originally
developed in fields such as physics and artificial intelligence. Although
the subject matter of the social sciences differs from that of the natural
sciences and different issues are important in modelling societies compared
with modelling, for example, aggregates of physical particles, these science
and engineering techniques are proving to be very useful. On the other
hand, some issues are specific to the social sciences and the relevance of
computer simulation to understanding human societies therefore needs to be
considered carefully.

One of the themes of social simulation research is that even when agents
are programmed with very simple rules, the behaviour of the agents consid-
ered together can turn out to be extremely complex. Conventional statistical
methods for analyzing social systems are almost all based on the assumption
of a linear relationship between variables. That is, the effect on the dependent
variable is proportional to a sum of a set of independent variables. But this
is a very restrictive assumption. A new interdisciplinary field called com-
plexity theory (Waldrop 1992; Kauffman 1995; Sole and Goodwin 2002) is
developing general results about nonlinear systems. An example: consider
pouring a steady stream of sand out of a pipe so that it mounts up into a
pyramid. As you pour on more sand, there will be little landslides down the
side of the pile. While the pyramidal shape of the pile and, in particular, the
angle of the side are predictable, depending on the properties of the average
sand grain, the timing, location and scale of the landslides are unpredictable
because the slippage is nonlinear. Once a grain of sand starts sliding, it pulls
others along with it and there is positive feedback leading to a mass of sand
slipping (Bak 1996). Similar nonlinearities are thought to cause stock market
crashes.

From the point of view of the scientist or mathematician, nonlinear
systems are difficult to study because most cannot be understood analyti-
cally. There is often no set of equations that can be solved to predict the
characteristics of the system. The only generally effective way of exploring
nonlinear behaviour is to simulate it by building a model and then running
the simulation (see Chapter 6). Even when one can get some understanding
of how nonlinear systems work, they remain unpredictable. However much
one studies stock markets or the properties of sand, it will still be impossible
(in principle) to predict the timing of a crash or a landslide.

This does have some lessons for explanation in the social sciences. For

Simulating human societies 11

instance, conventional philosophy of social science has often made too ready
a connection between explanation and prediction. It tends to assume that the
test of a theory is that it will predict successfully. This is not a criterion that
is appropriate for nonlinear theories, at least at the micro scale. Complexity
theory shows that even if we were to have a complete understanding of the
factors affecting individual action, this would still not be sufficient to predict
group or institutional behaviour. The message is even stronger if we make
the plausible assumption that it is not only social action that is complex in
this sense, but also individual cognition (Conte and Castelfranchi 1995).

Emergence

A formal notion of emergence is one of the most important ideas to come
from complexity theory. Emergence occurs when interactions among objects
at one level give rise to different types of objects at another level. More
precisely, a phenomenon is emergent if it requires new categories to describe
it which are not required to describe the behaviour of the underlying com-
ponents. For example, temperature is an emergent property of the motion of
atoms. An individual atom has no temperature, but a collection of them does.

That the idea of emergence in the social sciences is not obvious is attested
by the considerable debate among sociologists, starting with Durkheim
(1895), about the relationship between individual characteristics and social
phenomena. Durkheim, in his less cautious moments, alleged that social
phenomena are external to individuals, while methodological individualists
argued that there is no such thing as society (for example, Watkins 1955).
Both sides of this debate were confused because they did not fully under-
stand the idea of emergence. Recent social theorists (Kontopoulos 1993;
Archer 1995; Sawyer 2001, forthcoming) are now beginning to refine the
idea and work through the implications. Simulations can provide a powerful
metaphor for such theoretical investigations.

There is one important caveat in applying complexity theory to social
phenomena. It appears to leave human organizations and institutions as little
different in principle from animal societies such as ants’ nests (Drogoul and
Ferber 1994) or even piles of sand. They can all be said to emerge from
the actions of individuals. The difference is that while we assume that, for
instance, ants have no ability to reason – they just follow instinct and in doing
so construct a nest – people do have the ability to recognize, reason about
and react to human institutions, that is, to emergent features. The institutions
that result from behaviour that takes into account such emergent features

12 Simulation and social science

are characteristic of human societies (for example, governments, churches
and business organizations). The emergence of such reflexive institutions is
called ‘second-order emergence’ and might be one of the defining character-
istics of human societies, distinguishing them from animal societies (Gilbert
1995). It is what makes sociology different from ethology. Not only can we
as social scientists distinguish patterns of collective action, but the agents
themselves can also do so and therefore their actions can be affected by the
existence of these patterns.

A theoretical approach that was originally developed within biology, but
which is becoming increasingly influential because it takes this reflexive
character of human interaction seriously, is known as autopoietic or self-
organization theory (Varelaet al. 1991; Maturana and Varela 1992). Auto-
poietic theory focuses on organisms or units that are ‘self-producing’ and
self-maintaining. An autopoietic system is one that consists of a network of
processes that create components that through their interactions continuously
regenerate the network of processes that produced them. Social institutions
and cognitive systems have both been analyzed in these terms by Maturana
and Varela (see also Winograd and Flores 1986). The emphasis on process
and on the relations between components, both of which can be examined
by means of simulation, accounts for the developing link between this theo-
retical perspective and simulation research.

Simulation can also usefully be applied to theories involving spatial lo-
cation and rationality, two topics that have often been neglected in social sci-
ence, but which are increasingly recognized to have profound implications.
Geographical effects can be modelled by locating agents on a simulated land-
scape, faithfully reproducing an actual terrain – see, for example, Lansing’s
(1991) simulation of the irrigation system in Bali – or on the regular grid of
cells used with a cellular automata model. Rationality (Elster 1986) can be
modelled using the artificial intelligence techniques described in Chapters 8
and 9, but often the main concern is not to model general cognitive capability,
but to investigate the consequences of bounded rationality. For example,
some theories about markets assume that traders have perfect information
about all other traders and all transactions and are able to maximize their
own profits by calculating their optimum strategy on the basis of all this
information. In large markets, this is obviously unrealistic. What are the
consequences for markets reaching equilibrium if the traders have limited
information and limited capacity to process that information? Epstein and
Axtell (1996: Chapter 4) describe a model they constructed to study the
effect of decentralized markets where traders possess only local information
and bounded rationality.

Conclusion 13

Conclusion

In the following chapters, we shall consider in turn the main techniques
available for building simulations. These techniques each have their own
specific characteristics and areas of application. In Table 1.1, the ‘number
of levels’ refers to whether the techniques can model not just one level (the
individual or the society) but the interaction between levels. A technique
capable of modelling two or more levels is required to investigate emergent
phenomena. Some techniques allow the modelling of communication (for
example, the passing of messages) between agents and so are appropriate for
modelling language and interaction; others do not. The techniques based on
artificial intelligence (distributed artificial intelligence and learning models)
are able to accommodate sophisticated agent designs; others derive some of
their benefit from constraining the researcher to very simple agents. Finally,
most techniques are able to handle the large number of agents that one
would expect to find in social simulation, although the first to be considered
here, system dynamics, is oriented to the development of models of a whole
system, where the system itself is the one and only agent simulated.

Table 1.1: A comparison of social science simulation techniques

Chapter Number Communication Complexity Number
of levels between agents of agents of agents

3 System dynamics 1 No Low 1
4 Microsimulation 2 No High Many
5 Queuing models 1 No Low Many
6 Multilevel simulation 2+ Maybe Low Many
7 Cellular automata 2 Yes Low Many
8 Multi-agent models 2+ Yes High Few
9 Learning models 2+ Maybe High Many

We have suggested in this chapter that simulation has a number of
valuable features for social science research. One of the clearest is that it
is well adapted to developing and exploring theories concerned with social
processes. In comparison with some other methods of analysis, computer
simulations are well able to represent dynamic aspects of change. A second
important feature of simulation is that it can help with understanding the
relationship between the attributes and behaviour of individuals (the ‘micro’
level) and the global (‘macro’) properties of social groups. That is, it is
possible to use simulation to investigate emergence.

14 Simulation and social science

Simulation is akin to an experimental methodology. One can set up a
simulation model and then execute it many times, varying the conditions in
which it runs and thus exploring the effects of different parameters. Experi-
mental research is almost unknown in most areas of the social sciences, yet
it has very clear advantages when one needs to clarify causal relationships
and interdependencies. However, while simulation has similarities with ex-
perimentation, it is not the same. The major difference is that while in an
experiment one is controlling the actual object of interest (for example, in
a chemistry experiment, the chemicals under investigation), in a simulation
one is experimenting with a model rather than the phenomenon itself.

We shall develop this idea further in the next chapter, which is concerned
with the methodology of simulation research.

Chapter 2

Simulation as a method

This chapter is about the use of computer simulation as a method of social
research: the logic behind the method, the stages that one needs to go through
and the pitfalls to be avoided. To start, we need to define some terms.

We shall assume that there is some ‘real world’ phenomenon which you,
the researcher, are interested in. This we call thetarget (Doran and Gilbert
1994; Zeigler 1985). The aim is to create amodelof this target that is simpler
to study than the target itself. We hope that conclusions drawn about the
model will also apply to the target because the two are sufficiently similar.
However, since our modelling abilities are limited, the model will always be
simpler than the target. For example, we might model the real market for
the wholesale supply of fish with a simpler system where both suppliers and
purchasers are represented by computer programs standing in for complex
and multifaceted businesses and their customers (cf. Weisbuchet al.1997).

In the social sciences, the target is always a dynamic entity, changing
over time and reacting to its environment. It has both structure and be-
haviour. This means that the model must also be dynamic. We can represent
the model itself as aspecification– a mathematical equation, a logical state-
ment or a computer program – but to learn something from the specification,
we need to examine how the behaviour of the model develops over time. One
way of doing this is using an analytical method. This entails deriving the
model’s future structure from the specification by reasoning, perhaps using
logic or more often by using mathematics. For example, we might have a
model of the relationships between a set of macroeconomic variables and
use algebra to derive the outcome if one of those variables changes over

16 Simulation as a method

time.
With complex models, especially if the specification is nonlinear, such

analytical reasoning can be very difficult or impossible. In these cases,
simulation is often the only way. Simulation means ‘running’ the model
forward through (simulated) time and watching what happens. Whether one
uses an analytical technique or simulation, theinitial conditions, that is, the
state in which the model starts, are always important. Often, the dynamics
are very different depending on the precise initial conditions used.

Figure 2.1: The logic of statistical modelling as a method (after Gilbert 1993)

66

Social processes -

-

Data gathering

Parameter estimation

SimilarityAbstraction

Collected data

Predicted dataModel

The logic of simulation

With statistical models, the relationship between model and target is quite
well understood (see, for example, Gilbert 1993: Chapter 1). As Figure 2.1
indicates, the researcher develops a model (for example, a set of equations)
through abstraction from the presumed social processes in the target. These
equations will include parameters (for example, beta coefficients) whose
magnitudes are determined in the course of estimating the equations (this
is the step where a statistical package would normally be used). As well as
developing a model, the researcher will have collected some data with which
to perform the estimation (for example, survey data on the variables included
in the equation). The analysis consists of two steps: first, the researcher asks
whether the model generates predictions that have some similarity to the

The logic of simulation 17

data that have actually been collected (this is typically assessed by means
of tests of statistical hypotheses); and second, the researcher measures the
magnitude of the parameters (and perhaps compares their relative size, in
order to identify the most important).

Figure 2.2: The logic of simulation as a method

66

Target -

-

Data gathering

Simulation

SimilarityAbstraction

Collected data

Simulated dataModel

Much the same logic underlies the use of simulation models, as Fig-
ure 2.2 shows. Once again, the researcher develops a model based on pre-
sumed social processes. But this time, the model might be in the form of a
computer program rather than a statistical equation. This model is run and its
behaviour measured. In effect, the model is used to generate the simulated
data. These simulated data can then be compared with data collected in
the usual ways to check whether the model generates outcomes which are
similar to those produced by the actual processes operating in the social
world.

Both simulation models and statistical models can be used for expla-
nation and prediction. The prime purpose may be to try to understand
some particular social phenomenon: for instance, why one gets clusters
of people all of whom share the same opinions (see Chapter 7). We may
not be particularly interested in predicting how many people there are in a
cluster and, indeed, the theory might suggest that forecasting the number
is impossible (see the discussion of complexity in Chapter 1). A model
that incorporates simulated processes which lead to clustering might suit
the purpose of explaining the observed clusters. In other circumstances, we
might be particularly concerned with making specific predictions and less
concerned with understanding social processes. For example, there might

18 Simulation as a method

be a requirement to predict the level of aggregate personal taxation flowing
to the state in 20 years’ time, taking account of demographic changes (see
Chapter 4). The model we construct might have little in it about the social
processes involved in defining taxation policy and only very simple assump-
tions about demographic trends, yet be useful in making predictions about
aggregate fiscal changes.

While some statistical and simulation modellers emphasize the desire
for understanding and others emphasize the need for making predictions, all
simulations have in fact to satisfy both requirements: a successful predictive
model will contribute to understanding at least to some degree, while an
explanatory model will always be capable of making some predictions, even
if they are not very precise.

While there are these strong similarities between statistical models and
simulation models (and the boundary line between the two is not a hard-and-
fast one), there are also important differences. As we noted in Chapter 1,
simulation models are concerned with processes, whereas statistical models
typically aim to explain correlations between variables measured at one
single point in time. We would expect a simulation model to include explicit
representations of the processes which are thought to be at work in the
social world. In contrast, a statistical model will reproduce the pattern of
correlations among measured variables, but rarely will it be modelling the
mechanisms that underlie these relationships.

The stages of simulation-based research

With these basic ideas about the logic of simulation in mind, we can outline
the ‘ideal’ set of steps in using simulation in the social sciences (cf. Doran
1997b). One starts by identifying a ‘puzzle’, a question whose answer is not
known and which it will be the aim of the research to resolve. For example,
we might be curious about the reasons for the pattern of Puebloan settlements
which were established in Mexico fromAD 900 to 1300 (Kohleret al.1996).
This leads us to thedefinitionof the target for modelling (settlement dynam-
ics in the Mesa Verde region). Normally, someobservationsof the target
will be required in order to provide the parameters and initial conditions
for our model. For the work of Kohleret al. (1996), these were obtained
from detailed archaeological work by Van West (1994). One can then make
someassumptionsand design the model, probably in the form of a computer
program. The simulation itself is performed by executing this program and
the output of the simulation is recorded.

The stages of simulation-based research 19

So far, the steps involved are fairly obvious, although often not simple
to carry out. The remaining steps often receive less attention, yet they are
crucial. We need to ensure that the model is correctly implemented and
working as intended. This isverification – in effect, a ‘debugging’ step.
Unfortunately, this process can be difficult to carry out with complex simula-
tions and, in particular, it is difficult to know whether one has eradicated all
the remaining bugs. The difficulty is compounded by the fact that most social
science simulations are dependent on pseudo-random numbers to simulate
the effects of unmeasured variables and random effects (Gilbert 1996) and
so repeated runs can be expected to produce different outcomes.

Next, there isvalidation, ensuring that the behaviour of the model does
correspond to the behaviour of the target. If settlement patterns in the
Mesa Verde are being modelled, the simulation needs to reproduce to some
adequate degree the observed pattern of settlements. Unless there is some
correspondence, the simulation is unlikely to be a plausible model of the
processes which led to the formation of those settlements. Finally, one needs
to know how sensitive the model is to slight changes in the parameters and
initial conditions:sensitivity analysis. In the following we shall consider
some of these steps in more detail.

Designing a model

Every model will be a simplification – sometimes a drastic simplification –
of the target to be modelled. The most difficult step in designing a model
is to decide what needs to be left out and what needs to be included. The
more that is left out, the greater the conceptual leap required between the
conclusions drawn from the model and their interpretation in relation to the
target. The more that is put in, the more precisely the parameters have to be
measured or assumed, and each of them may have an effect on the validity
of the conclusions which are obtained. What one hopes for is a model
that embodies the minimum number of assumptions, but which applies as
generally as possible to many different circumstances. The choice of where
to place one’s model on this continuum between the detailed and the abstract
is partly a matter of skill and experience, partly a matter of research style
and partly a matter of the amount of data one has available and how difficult
it is to collect more. In general, accuracy (in terms of the number of data
points and assumptions built into the model) is important when the aim is
prediction, whereas simplicity is an advantage if the aim is understanding
(Axelrod 1997a).

20 Simulation as a method

The temptation is to make a model more detailed than it really needs to
be. Apart from the sheer labour of collecting and entering what can quickly
amount to many thousands of data points, there is a danger that the additional
complexity of dealing with substantial quantities of data will mean that
the stages of verification and validity become very difficult to carry out.
This in turn means that valid conclusions will be hard to draw from the
research. The best map of the world is the world itself, but unfortunately
such verisimilitude teaches us nothing about how the world works.

At the other end of the continuum from detailed to abstract modelling is
research on ‘artificial societies’. This is simulation without reference to any
specific ‘real world’ target. The object of study is the set of possible social
worlds, of which the actual world in which we live is just one (Conte and
Gilbert 1995). As Epstein and Axtell (1996: 4) write:

We view artificial societies aslaboratories, where we attempt
to ‘grow’ certain social structures in the computer – orin silico
– the aim being to discover fundamental local or micro mech-
anisms that are sufficient to generate the macroscopic social
structures and collective behaviours of interest.

At the heart of research on artificial societies is the goal of finding
theories that apply not just to human societies but to societies of interacting
agents generally. For example, there are results about the consequences of
constraints on communication in markets in which there are some agents
selling and others buying (see, for example, Alvin and Foley 1992). These
apply regardless of whether the buyers and sellers are people, organizations
or computers. Another example of the value of experimenting with artificial
societies is Doran’s (1997a) work on foreknowledge. His simulation studies
the implications of agents having knowledge of future facts or events. Of
course, most of us do not believe that people have foreknowledge, and
experimentation with worlds in which there is foreknowledge necessarily
involves the development of artificial societies. His work clarifies whether, in
worlds in which there is foreknowledge, agents can still have choices about
what to do. He shows that the answer is yes, there is still the possibility of
freedom of will unless the agents’ foreknowledge is total. Nevertheless, the
choices they have are constrained by the need to include in their predictions
of the future what is foreknown to occur. He is also able to investigate
whether foreknowledge is beneficial to the survival of the agents in his
artificial society (Doran 1998).

The stages of simulation-based research 21

Building the model

Once the model has been designed, one can turn to its construction. This
involves either writing a special computer program or using one of the many
packages or toolkits that have been written to help in the development of
simulations. It is almost always easier to use a package than to start afresh
writing one’s own program. This is because many of the issues that take
time when writing a program have already been dealt with in developing the
package. For example, writing code to show plots and charts from scratch
is a skilled and very time-consuming task, but most packages provide some
kind of graphics facility for the display of output variables. At least some
of the bugs in the code of packages will have been found by the developer
or subsequent users (although you should never assume that all bugs have
been eliminated). The disadvantage of packages is that they are, inevitably,
limited in what they can offer. There is a choice of several packages for some
styles of simulation, but nothing at all is available for others. In subsequent
chapters, we shall describe the available programs and comment on their
merits as we consider each type of simulation.

If one has to program a simulation without the aid of a package, a
question then arises about the best programming language to use. There are
several desirable features for a programming language for simulation:

• The language should be well structured and allow for incremental re-
finement. Most simulation programming is exploratory, because usu-
ally the specification of the program develops as the problem becomes
better understood. It is therefore important that the programmer can
cycle easily and quickly between coding, testing and modifying the
code. Interpreted languages (such as Java, Visual Basic, Python or
Ruby) are often better than compiled languages (C, C++ or Pascal)
in this respect, but modern compilers and programming environments
mean that the difference between compilation and interpretation is
now much less than it used to be.
• The language should allow easy and rapid debugging, programs

should be easily instrumented and there should be good graphics
libraries. Simulations generate lots of data and there needs to be an
easy way of processing them into manageable form. Because so much
time in writing simulation programs (as with other types of program)
consists of debugging, the quality of the facilities available for testing
and tracking down faults is very important.
• Once the program has been written and tested, many hundreds of runs

22 Simulation as a method

will be needed to carry out sensitivity analyses (see below). For this
reason, the final simulation program needs to run as efficiently as
possible; this implies that the language needs to be compiled rather
than interpreted.
• The language should preferably be familiar to the modeller and to

researchers in the simulation community, so that it is possible for
others to replicate simulation results and to take over and adapt the
program to their needs. It is also useful if the language is easily
portable between different types of computer.

Unfortunately, these various desirable features are contradictory in their
implications for the choice of a programming language for simulation. It is
difficult to find one that is easy to debug, has a good graphics library, can be
compiled efficiently and is portable across different computers. In practice,
this means that many different languages are used for simulation, depending
on the particular balance of attributes which modellers think is important for
their research. However, Java, C, C++, Objective C, Prolog, Smalltalk and
Lisp are probably the most common.

Verification and validation

Once one has a ‘working’ simulation, the next step is to check that the
simulation is actually doing what one expects (Balci 1994). With a com-
plicated computer program, it is all too easy to make errors and find that the
output is the result of a mistake, rather than a surprising consequence of the
model. The process of checking that a program does what it was planned
to do is known as verification. In the case of simulation, the difficulties
of verification are compounded by the fact that many simulations include
random number generators, which means that every run is different and that
it is only the distribution of results which can be anticipated by the theory. It
is therefore essential to ‘debug’ the simulation carefully, preferably using a
set of test cases, perhaps of extreme situations where the outcomes are easily
predictable.

It is often useful to set up a suite of such test cases and rerun the simula-
tion against them each time a major change is made, to check that further
errors have not been introduced. To make this easier, it is also desirable
to have a system that will automatically run the test suite and record the
outputs, perhaps even highlighting differences between the previous run and
this one, since it is these which will need attention. In order to keep a record

The stages of simulation-based research 23

of which version of the simulation program gave which results, a version
control system, such as provided in some programming environments, can
also be very useful. Chapter 9 considers these issues in more detail.

While verification concerns whether the program is working as the re-
searcher expects it to, validation concerns whether the simulation is a good
model of the target1. A model which can be relied on to reflect the behaviour
of the target is ‘valid’. Validity can be ascertained by comparing the output of
the simulation with data collected from the target (see Figure 2.2). However,
there are several caveats that must be borne in mind.

First, both the model and the target processes are likely to be stochas-
tic (that is, based partly on random factors). Exact correspondence would
therefore not be expected on every occasion. Whether the difference between
simulation and data from the target is so large as to cast doubt on the model
depends partly on the expected statistical distribution of the output measures.
Unfortunately, with simulations, these distributions are rarely known and not
easy to estimate.

Second, many simulations are path-dependent: the outcomes depend on
the precise initial conditions chosen because these affect the ‘history’ of the
simulation. In other words, the outcomes may be very sensitive to the precise
values of some of the assumptions in the model.

Third, even if the results obtained from the simulation match those from
the target, there may be some aspects of the target that the model cannot
reproduce. An example is found in the world systems models considered
in Chapter 3, where predictions about the growth of the world’s population
for the next 50 years looked plausible, but ‘retrodiction’ of the population
to the situation 20 years in the past, using the same model and the same
parameters, was completely wrong when compared with the actual world
population then.

Fourth, one must not forget the possibility that the model is correct, but
the data about the target are incorrect, or, more often, are themselves a result
of making assumptions and estimates. For example, in Chapter 8 we shall
discuss a model that aims to contribute to understanding the rise in social
complexity in France 20,000 years ago. The only data against which this
model can be validated are archaeological traces, which have to be subjected
to a great deal of interpretation before they can be used for validation.

Another kind of difficulty arises when the model is intentionally highly
abstract. It may be hard to relate the conclusions drawn from the model
to any particular data from the target. For example, in Chapter 7 we shall

1A similar distinction is made in the philosophy of science, between internal validity
(corresponding to verification) and external validity

24 Simulation as a method

encounter a model first proposed by Schelling (1971), which aims to ex-
plain one of the processes that could generate ethnic residential segregation.
However, it is a highly abstract model and it is not clear what data could be
used to validate it directly. The same issue arises with models of artificial
societies, where the target is either intentionally remote from the simulation,
or does not exist at all. For these models, questions of validity and of
verification are hard to distinguish.

Once one has a model that appears to be valid, at least for the particular
initial conditions and parameter values for which the simulation has been
run, the researcher is likely to want to consider a sensitivity analysis. This
aims to answer questions about the extent to which the behaviour of the sim-
ulation is sensitive to the assumptions which have been made. For example,
for a model of the tax and benefit system, one might be interested in whether
a small change in welfare benefit rates results in a small or a large change in
the total benefits paid out by the government. It might be that if the rate of
benefit is decreased, other poverty support arrangement cut in, so that the net
effect on government expenditure is much smaller than the benefit decrease
might suggest. Another issue that sensitivity analysis is used to investigate
is the robustness of the model. If the behaviour is very sensitive to small
differences in the value of one or more parameters we might be concerned
about whether the particular values used in the simulation are correct.

The principle behind sensitivity analysis is to vary the initial conditions
and parameters of the model by a small amount and rerun the simulation,
observing differences in the outcomes. This is done repeatedly, while sys-
tematically changing the parameters. Unfortunately, even with a small num-
ber of parameters, the number of combinations of parameter values quickly
becomes very large, and because each combination requires the simulation
to be run again, the resources required to perform a thorough analysis can
become excessive. In practice, the modeller is likely to have a good intuition
about which parameters are likely to be the most important to examine.

One of the ways in which the modeller can obtain an understanding of the
sensitivity of a simulation to the values of its parameters is to vary them at
random, thus generating a distribution of outcomes. One or more parameters
are set to values drawn from a uniform random distribution. Plotting the
values of the outputs generated from many runs of the simulation will give an
indication of the functional form of the relationship between the parameters
and the outputs and will indicate whether small parameter changes give rise
to large output variations. In effect, one is sampling the parameter space in
order to build up a picture of the behaviour of the model over many different
conditions.

The stages of simulation-based research 25

Randomization of parameters in order to obtain a sample of conditions
is one of several uses of random numbers in simulation.2 Random numbers
also have the following uses:

• They allow for all the external and environmental processes that are
not being modelled (the exogenous factors) such as the effects of the
job market in a simulation of household income over time. Here, the
random value is substituting for an unmeasured (and perhaps unmea-
surable) parameter and is equivalent to the modeller making a guess in
the absence of more accurate information.
• For a similar reason, they are sometimes used to model the effects of

agents’ personal attributes, such as their preferences and their emo-
tions.
• Some simulation techniques (for example, some kinds of cellular au-

tomata and agent-based models; see Chapters 7 and 8) yield different
results depending on the order in which the actions of agents in the
model are simulated. It is good practice to randomize the order to avoid
such unwanted effects.

Whatever the reason for introducing randomness, the simulation will
have to be run many times in order to observe its behaviour in a variety
of conditions. Results from the simulation will need to be presented as
distributions, or as means with confidence intervals. Once one has included a
random element, the simulation needs to be analyzed using the same statisti-
cal methods as have been developed for experimental research (for a primer,
see Boxet al. 1978): analysis of variance to assess qualitative changes (for
example, whether clusters have or have not formed) and regression to assess
quantitative changes.

Publication

The final stage in simulation research is to publish the results, adding them
to the stock of scientific knowledge. However, there are some particular
difficulties in writing about simulation (Axelrod 1997a). Ideally, the reader

2Strictly speaking, computers provide only ‘pseudo-random’ numbers, rather than truly
random numbers, but if a good generator is used there should not be any significant
difference. Most simulations use large numbers of ‘random’ numbers and depend greatly on
the accuracy of their distribution, so it is worth checking that the programming system being
used for the simulation does have a good pseudo-random number generator (see Appendix
C for more on this).

26 Simulation as a method

should be able to grasp the social science aspects of the research without
being drowned in detail, but should also be able to replicate the simulation,
if he or she wants to understand precisely how it works. These objectives
are in tension with one another. Often, there is not space within the length
of a conventional journal article or of a chapter in a book to describe a
simulation sufficiently to enable replication to be carried out. One solution is
to publish the code itself on the Internet. A more radical solution is to publish
in one of the increasing number of electronic journals that, because they are
not constrained by the costs of paper and printing, can include not only an
article of standard length, but also the code, sample runs and other materials.
An electronic journal also has no difficulty in publishing colour graphics,
animations and other multimedia formats, which would be impossible or
prohibitively expensive to reproduce on paper.3

Conclusion

There is still much to learn about the most effective methods for conducting
simulation-based research. However, experience is growing and the lessons
that have been learned can be summarized as follows:

• If the goal is understanding, use simulation to develop theories, not
accurate models. Even complicated models are unlikely to reproduce
the behaviour of the social world particularly well, are difficult to
construct and the complexity can get in the way of discovering new
relationships and principles.
• In the past, social scientists have tended to espouse either deduction

(loosely, testing of sets of assumptions and their consequences) or
induction (the development of theories by generalization of observa-
tions). Simulation provides a third possibility, in which one starts with
a set of assumptions, but then uses an experimental method to generate
data which can be analyzed inductively (Axelrod 1997a: 24). Keep in
mind the need to iterate between a deductive and inductive strategy as
one develops the model.
• Since many models incorporate random elements, the results of just

one run cannot be relied on. It is necessary to establish that the results
are robust with respect to different random values. In addition, for

3For an example of an electronic journal, see theJournal of Artificial Societies and So-
cial Simulationathttp://jasss.soc.surrey.ac.uk/. For an example of a multimedia
report of a simulation, see the CD-ROM which accompanies the book by Epstein and Axtell
(1996).

Conclusion 27

many simulations, it is important to conduct a sensitivity analysis of
the effect of variations in the assumptions on which the model is based.
• While many models have the objective of simulating a specific target

in the social world, it is also possible to develop models of artificial
societies which may be used to investigate not just our present society,
but also possible social worlds. This can be one way of developing
social theories which apply generally to interacting agents.

In the following chapters, we shall be developing these methodological
recommendations with respect to a number of approaches to simulation.
These range from the use of ‘world models’ and microsimulation, which
emphasize the value of simulation for prediction (for example, the effects
of population growth and environmental degradation on the human world as
a whole) to approaches based on multi-agent models, which emphasize the
value of exploring artificial societies.

Chapter 3

System dynamics and world
models

System dynamics has its roots in systems of difference and differential equa-
tions (Forrester 1980: Section 3.3). A target system, with its properties and
dynamics, is described using a system of equations which derive the future
state of the target system from its actual state. System dynamics is restricted
to the macro level in that it models a part of reality (the ‘target system’) as an
undifferentiated whole, whose properties are then described with a multitude
of attributes in the form of ‘level’ and ‘rate’ variables representing the state
of the whole target system and its changes, respectively.

The typicaldifferenceequation has the form

xt+1 = f(xt; ϑ) (3.1)

wherext+1 is the state of the target system at timet + 1, which depends on
its state at timet and on a parameterϑ. Bothx andϑ may be vectors, that is,
consist of several elements.f is usually a continuous function. Only in rare
cases can the difference equation be solved explicitly to yield an expression
for xt as a function oft andx0.

The typicaldifferentialequation has the form

ẋ(t) =
dx

dt
= g(x(t); ϑ) (3.2)

whereẋ(t) is the state change of the target system within an infinitesimally
short period of timedt. The amount of change depends on the statex(t) at

System dynamics and world models 29

time t and on a parameterϑ. Again, bothx andϑ may be vectors, andg is
usually a continuous function. In simple cases, the differential equation can
be solved explicitly, yielding an expression forx(t) as a function oft.

Conceptually, there is a close relationship between difference and dif-
ferential equations. In the case of difference equations, equidistant points
of time are numbered or labelled byt, and nothing is said about the time
scale. Hence, we could introduce a new time scaleτt in which the distance
of consecutively labelled or numbered points of time is∆τ . If the right-hand
side of a difference equation can be written in the following form:

xt+1 = f(xt; ϑ) = xt + g(xt; ϑ) (3.3)

meaning that the state at timet + 1 is equal to the state at timet, plus the
change of state, or with the explicit distance∆t between points of time,

xτt+∆τ = f(xτt ; ϑ) = xτt + ∆τ · g(xτt ; ϑ) (3.4)

(which is always possible), then the following transformation can be per-
formed:

xτt+∆τ − xτt = ∆τ · g(xτt ; ϑ) (3.5)
x(τ + ∆τ)− x(τ)

∆τ
= g (x(τ); ϑ) (3.6)

Taking limits – that is, as∆τ is reduced to an infinitesimally short period
of time (∆τ → 0) – we arrive at

lim
∆τ→0

x(τ + ∆τ)− x(τ)

∆τ
=

dx

dτ
= ẋτ = g (x(τ); ϑ) (3.7)

which is a differential equation. Note that the solution of a differential
equation will be different from the solution of the corresponding difference
equation. The simplest procedure for finding numerical solutions to differ-
ential equations uses the similarity between the two types of equations and
a fixed∆t to approximate the differential equation. And this is exactly what
system dynamics does, too. Thus, system dynamics differs from systems of
differential equations mostly in two technical aspects: discrete time is used as
a coarse approximation for continuous time to achieve numerical solutions;
and functions of all kinds, not just continuous functions, can be used.

System dynamics also provides the modeller with a graphical description
language, the system dynamics diagrams that describe the interdependencies
between the attributes of the target system. The graphical symbols – see
Figure 3.1 – are taken from the world of streaming water or steam which

30 System dynamics and world models

flows between containers controlled by valves: heating is a favourite exam-
ple for explaining the principles of feedback loops, and words referring to
bonding relations (Bunge 1979) are derived from words used for the same
target systems in many languages (for example, ‘influence’, according to
Webster’s Dictionarywas originally ‘an ethereal fluid held to flow from the
stars and to affect the actions of humans’).

Figure 3.1: System dynamics diagram (redrawn from Forrester 1980:
Fig. 2.2a)

Inventory
(stock,x)

?

�
�

A
A

A
A

�
�

Order rate
(flow, ∆x/∆t)

Adjustment timeb
@

@
@RDesired inventoryb� -

b�

� -

��
��

��
��

�� ��Supply

Figure 3.1 shows the supply flow () from the inexhaustible cloud
(source) into the ‘inventory’ through the valve ‘order rate’ which is con-
trolled (– – –) by the actual ‘inventory’, the ‘desired inventory’, and the
‘adjustment time’. Figures of the same kind may also be used to visualize
the control of more complex feedback loops, as in the case of models of
the dynamics of the world system. Such complex target systems and their
models show, however, that there are limits to the system dynamics diagram
technique: a diagram measuring 60 cm by 40 cm with a barely decipherable
legend (as on the back flap of Meadowset al.1974) is hardly appropriate to
communicate an overview. This is because a whole system dynamics model
is represented by one single object with a vast number of attributes.

Software 31

Software

DYNAMO was the first language especially designed for building system
dynamics models. It is a functional simulation language that can handle an
arbitrary number of equations for:

• levels – for example,L inventory.k=inventory.j

+dt*orderRate.jk

• rates – for example,R orderRate.kl=

(desiredInventory-inventory.k)/adjustmentTime

• constants – for example,C desiredInventory=6000

• initializations – for example,N inventory=1000

Auxiliaries can also be used as a shorthand for complicated expressions, as
in the example below (see p. 39).

Over the years, a number of DYNAMO-like simulation languages and
simulation systems have been developed. The best known of them include:

• Professional DYNAMO PlusTM;
• STELLA, originally developed for Macintosh, and much like DY-

NAMO, but with important additional features, including a graphical
user interface (http://www.hps-inc.com/);
• PowerSim (http://www.powersim.no or http://www.powersim.
com) is also equipped with a graphical user interface and allows for all
types of system dynamics modelling.
• VenSim (http://www.vensim.com) comes in a so-called ‘personal

learning edition’ that ‘gets you started in system dynamics modeling’
(quoted from the website) as well as standard and professional edi-
tions which allow for more complex models as well as for sensitivity
analyses.

There are several other packages running DYNAMO or DYNAMO-like
languages.

A DYNAMO program consists of expressions that are bound to names.
Names do not refer to memory locations where values of variables are
stored, but refer to the expressions to which they are bound. The DYNAMO
interpreter will evaluate expressions at the time they are first used and store
the result of the evaluation for further use. This is why the order of equations
in a DYNAMO program is arbitrary (although it is good programming style
to start with level equations and initializations of level variables, then place
rate equations just below, have equations for auxiliaries follow and end up
with constants).

32 System dynamics and world models

In the example above, the first expression to be evaluated is
inventory.k, the value that the levelinventory will assume at this point
in time (which always is marked by the suffixk). The related expression first
containsinventory.j, the value that the level assumed at the former point
in time (which is always marked by the suffixj) – this value will be known
from earlier computations and, if not, will be taken from the initialization. In
this case the initialization expressioninventory = 1000 will be evaluated
to 1000, where this branch of the evaluation will terminate. The next term
in the expression forinventory.k consists of two factors, namelydt and
orderRate.jk. dt means the length of one time step. The other factor
orderRate.jk is a rate to which a rate expression is bound. The suffixjk

denotes the fact thatorderRate.jk is the rate of flow betweenj andk.
Thus,inventory.k can be assigned a value.

The next step in the evaluation is the rateorderRate.kl, the rate of
flow during thenexttime step (betweenk andl). Expressions for rates may
contain references to the values of levels because these are either known
or can easily be evaluated (as they must only depend on former values,
.j and.jk). Expressions for auxiliaries are evaluated in the same manner.
Auxiliaries, too, have a former and an actual value.

At the end of all evaluations for one point in time, all values of levels,
auxiliaries and rates (with suffixes.k and .kl, respectively) replace the
former values (possibly after these have been written to some output file).
This means that at every point in time, only the rate and level values of
the immediate past are accessible and values about the earlier past are lost.
Special functions (for example, thedelay function) are necessary to model
influences from the remote past.

An example: doves, hawks and law-abiders

A differential equation model . . .

For an introductory example we take a model that was described by Martinez
Coll, who tried ‘to develop a formal model of the Hobbesian state of nature
from the perspective of bioeconomics’ (Martinez Coll 1986: 494). He de-
fines Hobbes’ state of nature as a society whose members are continually
competing with each other to obtain a resource. All resources belong to
someone, thus conflicts arise between resource owners and those who want
an additional resource. Martinez Coll follows Maynard Smith (1982) in that
he endows the members of his model society with one of three strategies: the

An example: doves, hawks and law-abiders 33

hawk, the dove and the law-abiding strategies.1

• Thedovenever tries to get hold of others’ possessions, but waits until
they are given up, and himself abandons his resource as soon as he is
attacked. If two compete for the same resource, one of them gets it
(through persistence or luck) with equal probability.
• The hawk always tries to get hold of others’ resources by means of

aggression and gives up only if he receives serious injuries.
• Thelaw-abidernever tries to get hold of others’ possessions, but waits

until they are given up, and he defends his possession by counterattack
until he either succeeds or is defeated.

In Hobbes’ state of nature, the human population consists only of hawks,
and in Hobbes’ ‘Commonwealth’ only of law-abiders.

The strategies applied by the individuals may spread all over the popula-
tion, by inheritance, imitation or education. In any case, in a situation defined
by the distribution of strategies, the most profitable strategy is transmitted to
other members of the population.

To operationalize what a profitable strategy is, we have to make some
assumptions about the ‘costs’ and ‘gains’ of strategies. We assume that if an
individual following strategyi (a hawk, dove or law-abiding strategy) meets
an individual following strategyj, i’s gain will be rij (if rij is negative,i
makes a loss in the encounter). The valuesrij are given by the utility of
possession minus the costs of the fight. Let the utility of possession beu
(poss in the DYNAMO model), and the costs of fighting or waiting becH

andcD (coha andcodo), respectively, and letcD < u < cH .
Thus, when an individual applying the strategy of any row of the table

below meets an individual applying the strategy of any column, they receive
the gains shown in the entries of the table (the first term is the gain of the
‘row’ individual, the second is the gain of the ‘column’ individual).

Dove Hawk Law-abider

Dove u
2
− cD, u

2
− cD 0, u

0+u
2
−cD

2
,

u+u
2
−cD

2

Hawk u, 0 u−cH

2
, u−cH

2

u−cH
2

+u

2
,

u−cH
2

+0

2

Law-abider
u+u

2
−cD

2
,

0+u
2
−cD

2

u−cH
2

+0

2
,

u−cH
2

+u

2
u
2
, u

2

Division by 2 is interpreted as follows:

1We will return to a very similar model in later chapters of this book (Chapter 6, p. 123;
see also Werner and Davis 1997).

34 System dynamics and world models

• When two individuals applying the same strategy meet, each of them
has the same chance of winning or losing. For example, if two hawks
meet, one of them will get the resource (u), while the other will receive
serious injuries (−cH). Since both have the same chance of winning,
the expected outcome will beu−cH

2
.

• When a law-abider meets another individual each of them may be the
lawful owner of the resource competed for. For example, if a dove
meets a law-abider and both compete for the same resource, then we
have two equally probable possibilities:

– If the law-abider is the lawful owner of the resource, it keeps the
resource (u), and the dove takes nothing (0).

– If the dove is the lawful owner of the resource, both have to wait
until one of them gives up (−cD) and then one of them gets the
resource with equal probability, so the expected outcome of this
case isu

2
− cD for both of them.

Thus the overall outcome is
u+(u

2
−cD)

2
for the law-abider and

0+(u
2
−cD)

2

for the dove.

For our numerical example, we will take the following numbers:cD = 3,
u = 10 andcH = 20, which yields the following payoff matrix:

Dove Hawk Law-abider
Dove 2, 2 0, 10 1, 6
Hawk 10, 0 –5, –5 2.5, –2.5
Law-abider 6, 1 –2.5, 2.5 5, 5

Now we have to observe the average gainyi(t) of an individual applying
strategyi at timet: it is given by the mean of possible gains, weighted by the
proportionspi of the population following each of the strategies,i:

yi(t) =
∑
j

rijpj(t) (3.8)

This average gain of strategyi must be compared with the mean gain of all
strategies:

y(t) =
∑

i

yi(t)pi(t) (3.9)

The growth of the subpopulation applying strategyi is modelled as propor-
tional to the differenceFi(t) between its average gain and the overall mean
gain of all strategiesy(t):

Fi(t) = yi(t)− y(t) (3.10)

An example: doves, hawks and law-abiders 35

If Fi(t) is positive, then strategyi is more successful than the average and it is
inherited, imitated or indoctrinated more often; that is, it spreads faster than
the overall mean of the strategies. Thus, the relative growth of the strategies
can be written as follows:

pi(t + 1) = pi(t)[1 + Fi(t)] (3.11)

This difference equation can be transformed into a differential equation if
we assume that within a time span of length∆t the effects on growth are
reduced by this factor (compare equations (3.3)–(3.7)):

pi(t + ∆t) = pi(t)[1 + ∆tFi(t)] (3.12)
pi(t + ∆t)− pi(t)

∆t
= pi(t)Fi(t) (3.13)

Taking limits, we have

lim
∆t→0

pi(t + ∆t)− pi(t)

∆t
= ṗi = piFi (3.14)

Inserting equations (3.10), (3.9) and (3.8) into equation (3.14) yields the
relative growth of strategyi:

ṗi = piFi (3.15)

= pi(yi − y) (3.16)

= piyi − pi

∑
k

ykpk (3.17)

= pi

∑
j

rijpj(t)− pi

∑
k

∑
j

rkjpj(t)pk(t) (3.18)

which is a cubic differential equation of the same type as described by
Eigen and Schuster (1979: 30–31) (selection under constrained growth with
nonlinear growth rates) and used by Troitzsch (1994: 44).

. . . and its analytical treatment

Differential equation models of this type can be treated in three different
ways:

• by linear stability analysis, where interest centres on whether the
model can assume a stationary state (or equilibrium, a state in which
the system will remain once it has reached this state) and how the

36 System dynamics and world models

system performs in an infinitesimally small region of its phase space
around stationary states, that is, whether the equilibria are stable or
unstable;
• by global stability analysis, which is concerned with whether sta-

tionary states are attractors or repellors, that is, whether the system
approaches or escapes stationary states from arbitrary initial states;
• by numerical treatment, in which a large number of trajectories are

calculated starting from different initial states.

The first question is whether and where a system has stationary states.
This is addressed by determining those states in which the right-hand sides
of the system of differential equations become zero. In these states, the
derivatives, that is, the time-dependent changes of all state variables, are
zero, and consequently, the system will remain one of these states once it has
been reached. This means we equate the right-hand side of equation (3.18)
to zero:

0 = pi

∑
j

rijpj(t)− pi

∑
k

∑
j

rkjpj(t)pk(t) (3.19)

Three first candidates for stationary states are all the states in which the
whole population applies the same strategy. ForpD = pH = 0 and, conse-
quently,pL = 1, equation (3.19) is satisfied fori = D (dove) andi = H
(hawk); and fori = L (law-abider) it simplifies to

0 = 1 · rLL · 1− 1 · rLL · 1 · 1 (3.20)

and the same is true for all permutations of indices.
There is a fourth stationary state, in which doves and hawks coexist

and law-abiders are absent. To find this stationary state (and to do some
mathematical derivations, which are necessary for the following discussion)
it is convenient to express the system of differential equations in terms of the
constantscH , cD andu, and to keep in mind that there are only two coupled
differential equations, because at all timespL = 1 − pD − pH . By several
intricate transformations and insertions, this leads to the following system of
differential equations:

ṗD = −pHp2
D

2
(2cD + cH) +

pHpD

4
(2cH + 2cD − u) +

+
p2

D

4
(2cD + u)− pD

4
(2cD + u) (3.21)

ṗH = −p2
HpD

2
(2cD + cH) +

p2
H

4
(cH − u) +

+
pHpD

4
(4cD + cH + u)− pH

4
(cH − u) (3.22)

An example: doves, hawks and law-abiders 37

Both right-hand sides of this system reduce to zero for

pD =
cH − u

2cD + cH

pH =
2cD + u

2cD + cH

(3.23)

This means that the system will be in equilibrium if the proportion of doves
in the population is cH−u

2cD+cH
and the proportion of hawks is2cD+u

2cD+cH
(and no

law-abiders are present).
To find out what happens in an immediate (infinitesimal) neighbourhood

of the stationary states we have to approximate the nonlinear system of
differential equations (3.21) and (3.22) by a linear system. We leave this
analysis to Appendix B (p. 267) which will also give a first introduction
to the analytical treatment of equation-based models. Its result is that the
only stable state is the state with only law-abiders surviving. The states with
only doves, with only hawks, and the mixed state in equation (3.23) are all
unstable, so that even minimal fluctuations that import a small fraction of
law-abiders into the population will lead to an ever growing proportion of
law-abiders. A population starting with an arbitrary mixture of only hawks
and doves into which some law-abiders are inserted will first approach the
mixed stationary state of equation (3.23) and then the proportion of law-
abiders will grow until the law-abiders have driven out all the hawks.

Intuitively, we may assume that the law-abiders are fitter than both hawks
and doves. They avoid the additional costs of fighting which the hawks have
to bear when they attack others, and they avoid the unnecessary losses the
doves have to bear when they do not defend their possessions against attacks
by hawks. In a world with a large majority of hawks, law-abiders are not
much better off than hawks, because they will behave much like hawks in
most encounters (in that they at least start counterattacks), and in a world
with a large majority of doves, law-abiders are not much better off than
doves, because they will behave like doves in most encounters (in that they
wait for a possession until it is given up). But in a mixed world they enjoy
their adaptive strategy: in encounters with hawks they have a better expected
outcome than doves because they give up less easily than doves, and in
encounters with doves they have the better expected outcome than doves
because they take the resources away without waiting.

A DYNAMO model

The equations with which we described our model mathematically,
(3.8)–(3.11), can easily be transformed into a DYNAMO model. The

38 System dynamics and world models

Table 3.1: Correspondence between the system of differential equations and
the DYNAMO code

pD(t + 1) dove.k
pH(t + 1) hawk.k
pL(t + 1) lawa.k
pD(t) dove.j
.
yD(t) =

∑
j rDjpj(t) dove.k*rdd+hawk.k*rdh+lawa.k*rdl

.
yD(t)pD(t) yieldd.kl=(dove.k*rdd+hawk.k*rdh

+lawa.k*rdl)*dove.k
.
y(t) yields.kl=yieldd.kl+yieldh.kl

+yieldl.kl
pD(t)FD(t) = pD(t) (yD(t)− y(t)) yieldd.jk-dove.j*yields.jk

correspondence between the mathematical formulation and the DYNAMO
code is given in Table 3.1 (i is replaced byD, H andL, respectively).

Thus, we arrive at a first formulation of the DYNAMO model:

dove.k=dove.j+dt*(yieldd.jk-dove.j*yields.jk)
hawk.k=hawk.j+dt*(yieldh.jk-hawk.j*yields.jk)
lawa.k=lawa.j+dt*(yieldl.jk-lawa.j*yields.jk)
yieldd.kl=(dove.k*rdd+hawk.k*rdh+lawa.k*rdl)*dove.k
yieldh.kl=(dove.k*rhd+hawk.k*rhh+lawa.k*rhl)*hawk.k
yieldl.kl=(dove.k*rld+hawk.k*rlh+lawa.k*rll)*lawa.k
yields.kl=yieldd.kl+yieldh.kl+yieldl.kl
...

This DYNAMO program is correct, but it does not reflect the fact that
the sum of the level variables(dove.k+hawk.k+lawa.k) always remains
constant. In a population of constant size, there are no flows to and from
outside, but only flows among the subpopulations. Observe, however, that
a direct flow between the doves’ and the law-abiders’ populations need
not be explicitly modelled. Only net flows via the rates for the doves’ and
the law-abiders’ populations can and need be modelled, since Martinez
Coll’s explication of his model does not give any clue to the individual
flows between the subpopulations. His description is only about growing
and shrinking subpopulations, not about individuals changing their strategies
– hence we cannot determine how many individuals (or which proportion)
‘flow’ from, for example,dove to lawa.

An example: doves, hawks and law-abiders 39

To visualize this fact, one would need a system dynamics diagram with-
out sources and sinks,2 like that in Figure 3.2 – which, however, is not a
systems dynamics diagram in the sense of Forrester, but a diagram that is
generated in the first step of STELLA modelling.

A STELLA model

With the help of the STELLA software one does not start with equations, but
with graphic symbols that are arranged on screen to yield a diagram that is
much like the diagrams invented by Forrester. The STELLA software then
converts the diagram into program code, which is similar to, but not identical
with DYNAMO code. The main difference between the two formalisms is
that STELLA uses a more mathematical notation instead of the crypticJKL

denotation of the time points – as is shown in the program code below.
The terminology of STELLA is quite similar to DYNAMO, but levels

are calledstocksin STELLA, while rates areflows and auxiliaries (such
asyieldd in the following example) areconverters. Stocks are connected
by flows, either between each other (as in this example) or with sinks and
sources (as in the next example below).Connectorsconnect stocks and
converters with the valves in the flows.

In our example, the diagram consists of three stocks, each standing for
one of the populations, and two bidirectional flows calledddove anddlawa
both of which can be either negative or positive (and this is whydhawk need
not explicitly be modelled).ddove and dlawa have to be calculated in a
way that reproduces Martinez Coll’s original ideas (see the program code
generated by STELLA). Of course, STELLA cannot formulate the right hand
sides forddove, for example, instead the STELLA user is given a chance to
write down this right hand side. The panel popping up when theddove line in
STELLA’s code window is double-clicked (see Figure 3.3) lists the required
inputs for the right hand side of theddove equation (this list is derived from
the arrows pointing into theddove valve) and gives the user the opportunity
to enter his or her code.

The full STELLA code derived from the diagram of Figure 3.2 is the
following:

2A ‘sink’ in system dynamics terminology is a never-overflowing basin to which flows
may be directed that leave the system; thus it is the opposite of a ‘source’. Note that in
linear stability analysis (see Appendix B) ‘sink’ and ‘source’ have a different meaning,
namely stable and unstable stationary state, respectively.

40 System dynamics and world models

Figure 3.2: System dynamics diagram of the dove–hawk–law-abider model

Hawks

Doves

LawAbiders

ddove

dlawa

yieldd

yieldl

yieldh yields

rdd

rdh

rdl

rld

rlh

rll

rhd

rhh

rhl

poss

coha

codo

Doves(t) = Doves(t - dt) + (- ddove) * dt

INIT Doves = (1-InitialHawks)/2
ddove = Doves*yields-yieldd

Hawks(t) = Hawks(t - dt) + (ddove - dlawa) * dt

INIT Hawks = InitialHawks
ddove = Doves*yields-yieldd
dlawa = yieldl-LawAbiders*yields

LawAbiders(t) = LawAbiders(t - dt) + (dlawa) * dt
INIT LawAbiders = (1-InitialHawks)/2
dlawa = yieldl-LawAbiders*yields

An example: doves, hawks and law-abiders 41

Figure 3.3: Entering flow equations in STELLA

codo = 3
coha = 20
InitialHawks = 0.9
poss = 10
rdd = poss/2-codo
rdh = 0
rdl = rdd/2
rhd = poss
rhh = (poss-coha)/2
rhl = (rhh+poss)/2
rld = (rdd+poss)/2
rlh = rhh/2
rll = poss/2
yieldd = (Doves*rdd+Hawks*rdh+LawAbiders*rdl)*Doves
yieldh = (Doves*rhd+Hawks*rhh+LawAbiders*rhl)*Hawks
yieldl = (Doves*rld+Hawks*rlh+LawAbiders*rll)*LawAbiders
yields = yieldd+yieldh+yieldl

yieldd, ..., yields are converters (in DYNAMO: auxiliaries) which
are used as shorthand for a longish expression such as(Doves*rdd

+ Hawks*rdh + LawAbiders*rdl)*Doves which could have replaced

42 System dynamics and world models

yieldd in line 3 of the above program code (but then with any change of
this expression, one would have needed to change it several times).

Running this simulation with the payoffs from the table on p. 34 and an
initial distribution of 90 per cent hawks and 5 per cent of both doves and
law-abiders, we obtain the results in Figure 3.4. With 99.9 per cent hawks,
we obtain Figure 3.5. Figure 3.6 shows the results with 99 per cent doves at
the start. This model displays the following behaviour:

• The proportion of hawks rapidly decreases (or increases) to about 61
per cent, whereas the proportion of doves rises (or falls) to about 38
per cent. This level persists for quite a while (this is much more clearly
visible in Figure 3.5 and Figure 3.6 than in Figure 3.4; see the discus-
sion below, in the commentary section). Afterwards the proportions
of both hawks and doves decrease, first slowly, then more rapidly. A
mixture of about 61.5 per cent hawks and about 38.5 per cent doves
makes up a stationary state – see equation (3.23) – which is stable in
the absence of law-abiders (that is, it is a saddle point state, which is
left if there is even a minute proportion of law-abiders).
• After the stationary state, the proportion of law-abiders increases very

slowly.
• Later on, the proportions of both hawks and doves decrease (and

eventually they become extinct), while the proportion of law-abiders
rises to 100 per cent.

Of course, any population with only one strategy extant is at a stationary
state. With the parameter values as applied above, only the last mentioned
state – the extinction of hawks and doves – is a stable state. Even if the
simulation starts with 99 per cent doves and 0.5 per cent of hawks and law-
abiders each, only the latter survive (see Figure 3.6).

For Hobbes’ theory we have two consequences:

• As soon as the law-abiding strategy, which is superior to the other
two, was invented, it would necessarily prevail, and it would so by
nature, not by covenant and only because of the individuals’ capacity
to inherit, imitate or learn.
• The law-abiding strategy prevails only after a considerable time. The

time it takes until it first grows is the longer, the larger the initial
proportion of hawks. The eventual success is rather sudden, the more
so, the larger the initial proportion of hawks (compare Figure 3.4 to
Figure 3.5).

An example: doves, hawks and law-abiders 43

Figure 3.4: Result of a STELLA run of the dove–hawk–law-abider model
with 90 per cent hawks at the start

Figure 3.5: Result of a STELLA run of the dove–hawk–law-abider model
with 99.9 per cent hawks at the start

Figure 3.6: Result of a STELLA run of the dove–hawk–law-abider model
with 99 per cent doves at the start

44 System dynamics and world models

Commentary

Neither the mathematical treatment nor the simulation allowed a convincing
qualitative overall description of the model. While mathematics taught us
that, regardless of the initial conditions, there is only one stable state, the
equations did not say much about the path taken through the state space.
Simulation, on the other hand, showed the behaviour of the model, but only
for one initialization at a time. Hence, the comparison of a large number
of simulation runs is necessary to complete the qualitative description of a
model’s behaviour, larger than the number of runs we could present here.

To overcome this gap between mathematical analysis and single-run
simulation, we choose next another kind of visual representation, namely
the representation of the model’s behaviour in its state space. For this we
draw 20 of the paths the model takes through its state space (see Figure 3.7
– the state space is spanned by the proportions of doves and hawks, and
every point on one of the curves represent a state explicitly defined by the
proportions of doves and hawks; the representative point of a population

Figure 3.7: Behaviour of the dove–hawk–law-abider model in its state space

Doves

Hawks

 0.0000 0.9950 0.3317 0.6633

 0.0000

 0.9950

 0.3317

 0.6633

World models 45

moves towards the origin, which in turn represents a state with no doves and
no hawks, but only law-abiders). Note that this diagram does not indicate the
speed with which the model changes state.

When the model starts with a large proportion of doves (and conse-
quently with a tiny proportion of both hawks and law-abiders), that is to
say, from the lower right-hand corner of the state space, first the number of
hawks rises while the number of doves decreases. The number of law-abiders
remains small for quite a time, until the proportions of doves and hawks
approach the fourth stationary state (see equation (3.23)). From then on,
the numbers of both doves and hawks decrease, and the proportion of law-
abiders increases until in the end both doves and hawks die out. If we have a
larger number of law-abiders and only very few hawks from the beginning,
that is, if we start from the middle of the bottom of the state space, the
number of hawks initially increases only slightly and afterwards decreases,
while the number of doves decreases from the very beginning. If we start
with many hawks and few doves and law-abiders (top left-hand corner of the
state space), then the number of hawks decreases fast, the number of doves
first increases and then decreases again, while the number of law-abiders
only begins to grow after the model has approached the saddle point.

So we are able to generalize the conclusions of the previous section, and
this generalization would not have been possible from the few simulation
runs we described there:

• The law-abiding strategy prevails only after a considerable time. The
more homogeneous the population at the start (a large majority of
dovesor hawks before the first law-abiders are born), the later its
success, and the more sudden its rise (start from the bottom right-hand
corner of the state space).
• If the first law-abiders are born into a mixed society of doves and

hawks, they begin to multiply very soon (start from the saddle point).

World models

System dynamics and DYNAMO received widespread interest mainly be-
cause they were used to build large world models such as WORLD2 (For-
rester 1971); WORLD3 (Meadowset al. 1974); and WORLD3 revisited
(Meadowset al. 1992). Forrester’s WORLD2 was the first and simplest of
these. We will use it now to discuss some problems of large system dynamics
models.

46 System dynamics and world models

Figure 3.8: Main features of Forrester’s world model

P
o

p
u

la
ti
o

n

R
e

s
o

u
rc

e
s

C
a

p
it
a

lI
n

v
e

s
tm

e
n

t

P
o

ll
u

ti
o

n

D
e

a
th

R
a

te

B
ir
th

R
a

te

B
ir
th

R
a

te
N

o
rm

a
l

R
e

s
o

u
rc

e
s
U

s
a

g
e

R
a

te

P
o

ll
u

ti
o

n
G

e
n

e
ra

ti
o

n

P
o

ll
u

ti
o

n
A

b
s
o

rp
ti
o

n

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tG
e

n
e

ra
ti
o

n

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tD
is

c
a

rd

~

B
ir
th

R
a

te
M

a
te

ri
a

lM
u

lt
ip

li
e

r

~

B
ir
th

R
a

te
F

o
o

d
M

u
lt
ip

li
e

r ~

B
ir
th

R
a

te
P

o
ll
u

ti
o

n
M

u
lt
ip

li
e

r
~

B
ir
th

R
a

te
C

ro
w

d
in

g
M

u
lt
ip

li
e

r

~

D
e

a
th

R
a

te
C

ro
w

d
in

g
M

u
lt
ip

li
e

r

~

D
e

a
th

R
a

te
P

o
ll
u

ti
o

n
M

u
lt
ip

li
e

r

~

D
e

a
th

R
a

te
F

o
o

d
M

u
lt
ip

li
e

r

D
e

a
th

R
a

te
N

o
rm

a
l

~

D
e

a
th

R
a

te
M

a
te

ri
a

lM
u

lt
ip

li
e

r

M
a

te
ri
a

lS
ta

n
d

a
rd

O
fL

iv
in

g

E
ff
e

c
ti
v
e

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tR
a

te

E
ff
e

c
ti
v
e

C
a

p
it
a

lI
n

v
e

rs
tm

e
n

tR
a

te
N

o
rm

a
l

C
ro

w
d

in
g

R
a

ti
o

L
a

n
d

A
re

a

P
o

p
u

la
ti
o

n
D

e
n

s
it
y
N

o
rm

a
l

~

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tM
u

lt
ip

li
e

r

C
a

p
it
a

lI
n

v
e

s
tm

e
n

t

G
e

n
e

ra
ti
o

n
N

o
rm

a
l

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tD
is

c
a

rd
N

o
rm

a
l

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tR
a

te

N
a

tu
ra

lR
e

s
o

u
rc

e
s

F
ra

c
ti
o

n
R

e
m

a
in

in
gN
a

tu
ra

lR
e

s
o

u
rc

e
s
In

it
ia

l
~

N
a

tu
ra

lR
e

s
o

u
rc

e
s

E
x
tr

a
c
ti
o

n
M

u
lt
ip

li
e

r

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tI
n

A
g

ri
c
u

lt
u

re
F

ra
c
ti
o

n

C
IA

F
In

c
re

a
s
e

C
IA

F
D

e
c
re

a
s
e

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tF
o

r

A
g

ri
c
u

lt
u

re
A

d
ju

s
tm

e
n

tT
im

e

~

C
a

p
it
a

lF
ra

c
ti
o

n
In

d
ic

a
te

d

B
y
F

o
o

d
R

a
ti
o

~

C
a

p
it
a

lI
n

v
e

s
tm

e
n

t

F
ro

m
Q

u
a

li
ty

R
a

ti
o

~

R
e

s
o

u
rc

e
s
F

ro
m

M
a

te
ri
a

lM
u

lt
ip

li
e

r

R
e

s
o

u
rc

e
s
U

s
a

g
e

R
a

te
N

o
rm

a
l

C
a

p
it
a

lI
n

v
e

s
tm

e
n

t

R
a

ti
o

In
A

g
ri
c
u

lt
u

re

C
a

p
it
a

lI
n

v
e

s
tm

e
n

tI
n

A
g

ri
c
u

lt
u

re
F

ra
c
ti
o

n
N

o
rm

a
l

~

F
o

o
d

P
o

te
n

ti
a

lF
ro

m

C
a

p
it
a

lI
n

v
e

s
tm

e
n

t

~

F
o

o
d

F
ro

m
C

ro
w

d
in

g
M

u
lt
ip

li
e

r

F
o

o
d

R
a

ti
o

P
o

ll
u

ti
o

n
S

ta
n

d
a

rd

P
o

ll
u

ti
o

n
R

a
ti
o

~

Q
u

a
li
ty

O
fL

if
e

F
ro

m
M

a
te

ri
a

l

~

Q
u

a
li
ty

O
fL

if
e

F
ro

m
F

o
o

d

F
o

o
d

C
o

e
ff
ic

ie
n

t

F
o

o
d

N
o

rm
a

l

~

F
o

o
d

P
o

ll
u

ti
o

n
M

u
lt
ip

li
e

r

~

P
o

ll
u

ti
o

n
A

b
s
o

rp
ti
o

n
T

im
e

P
o

ll
u

ti
o

n
N

o
rm

a
l

~

P
o

ll
u

ti
o

n
F

ro
m

C
a

p
it
a

lM
u

lt
ip

li
e

r

Q
u

a
li
ty

O
fL

if
e ~

Q
u

a
li
ty

O
fL

if
e

F
ro

m
P

o
ll
u

ti
o

n

~

Q
u

a
li
ty

O
fL

if
e

F
ro

m
C

ro
w

d
in

g

P
o

p
u

la
ti
o

n

World models 47

Figure 3.8 shows a STELLA version of Forrester’s world model with its
population sector, pollution sector, natural resources sector and capital stock
sector. All these sectors contain one or two internal feedback loops. They are
tied together by numerous auxiliaries and controlled by numerous constants.

The bottom part of Figure 3.8 shows some of the feedback mechanisms
between the population and the pollution sectors. The corresponding lines of
Forrester’s program are shown below in a STELLA version:

• The population increases and decreases according to the birth and
death rates:

Population(t) = Population(t - dt) + (BirthRate -
DeathRate) * dt

• The birth rate depends on the actual population size, on a constant
‘normal birth rate’ and on several auxiliaries (‘birth rate multipliers’)
for food supply, material life standard, crowding and pollution:

BirthRate = Population*BirthRateNormal*
BirthRateFoodMultiplier*
BirthRateMaterialMultiplier*
BirthRateMaterialMultiplier*
BirthRateCrowdingMultiplier*
BirthRatePollutionMultiplier

BirthRateCrowdingMultiplier = GRAPH(CrowdingRatio)
(0.00, 1.05), (1.00, 1.00), (2.00, 0.9), (3.00, 0.7),
(4.00, 0.6), (5.00, 0.55)
CrowdingRatio = Population/(LandArea*

PopulationDensityNormal)
LandArea = 135E6
PopulationDensityNormal = 26.5
BirthRatePollutionMultiplier = GRAPH(PollutionRatio)

(0.00, 1.02), (10.0, 0.9), (20.0, 0.7), (30.0, 0.4),
(40.0, 0.25), (50.0, 0.15), (60.0, 0.1)

The latter two (BirthRateCrowdingMultiplier and BirthRate-

PollutionMultiplier) are determined by so-called table
functions (see below). BirthRateCrowdingMultiplier and
BirthRatePollutionMultiplier depend on CrowdingRatio

(crowding) and PollutionRatio (pollution rate), respectively.
CrowdingRatio is defined as proportional to the actual population
size (for the latter, see below).

48 System dynamics and world models

• The death rate also depends on the actual population size, on a constant
death rate and, like the birth rate, on multipliers for food supply,
material life standard, crowding and pollution:

DeathRate = Population*DeathRateNormal*
DeathRateMaterialMultiplier*
DeathRatePollutionMultiplier*
DeathRateFoodMultiplier*
DeathRateCrowdingMultiplier

DeathRateFoodMultiplier = GRAPH(FoodRatio)
(0.00, 30.0), (0.25, 3.00), (0.5, 2.00), (0.75, 1.40),
(1.00, 1.00), (1.25, 0.7), (1.50, 0.6), (1.75, 0.5),
(2.00, 0.5)

DeathRateMaterialMultiplier =
GRAPH(MaterialStandardOfLiving)
(0.00, 1.80), (0.5, 1.80), (1.00, 1.00), (1.50, 0.8),
(2.00, 0.7), (2.50, 0.6), (3.00, 0.53), (3.50, 0.5),
(4.00, 0.5), (4.50, 0.5), (5.00, 0.5)

DeathRateCrowdingMultiplier = GRAPH(CrowdingRatio)
(0.00, 0.9), (1.00, 1.00), (2.00, 1.20), (3.00, 1.50),
(4.00, 1.90), (5.00, 3.00)

DeathRatePollutionMultiplier = GRAPH(PollutionRatio)
(0.00, 0.92), (10.0, 1.30), (20.0, 2.00), (30.0, 3.20),
(40.0, 4.80), (50.0, 6.80), (60.0, 9.20)

Again, the death rate multipliers (DeathRateFoodMultiplier,
DeathRateMaterialMultiplier, DeathRateCrowding-

Multiplier andDeathRatePollutionMultiplier) are determined
by table functions different from the ones used for the calculation of
birth rate multipliers.
• The pollution rate is calculated from the actual pollution level by a

simple division:

PollutionRatio = Pollution/PollutionStandard
PollutionStandard = 3.6e9

• The level of pollution is determined by the rates of its generation and
absorption:

Pollution(t) = Pollution(t - dt) + (PollutionGeneration -
PollutionAbsorption) * dt

World models 49

• Pollution generation depends on the population size, on a switchable
constant, and onpolcm, the ‘pollution capital multiplier’ determined
by the capital sector, which we will not discuss here:

PollutionGeneration = Population*PollutionNormal*
PollutionFromCapitalMultiplier

• Pollution absorption depends only on the actual level of pollution, but
in so intricate a manner that a table function is again used:

PollutionAbsorption = Pollution/PollutionAbsorptionTime
PollutionAbsorptionTime = GRAPH(PollutionRatio)

(0.00, 0.6), (10.0, 2.50), (20.0, 5.00), (30.0, 8.00),
(40.0, 11.5), (50.0, 15.5), (60.0, 20.0)

Table functions were DYNAMO’s (and graph functions are STELLA’s)
means of modelling those nonlinear relationships between two variables that
cannot be written down as a single equation. In most cases, these nonlinear
relationships are taken from empirical data. In STELLA, function tables are
defined with the help of a special window which is shown in Figure 3.9.

The value thattable returns is calculated as a linear interpolation. The

Figure 3.9: Evaluation of table functions in STELLA

50 System dynamics and world models

table function used in the calculation of pollution absorption is evaluated as
indicated by Figure 3.9: function values when its argument is within the first
interval are interpolated between the first and second table entries, function
values when its argument is within the second interval are interpolated
between the second and third table entries, and so on. Thus, the table must
haven + 1 entries forn intervals.

The table function technique makes a large number of numerical values
necessary in a STELLA program. With WORLD2’s 22 table functions, this
amounts to 151 numerical values.

Figure 3.10 shows its predictions for births, deaths and world population
size. The latter is predicted to have its maximum about the year 2035 when,
for the first time since the early twentieth century, the number of deaths will
exceed the number of births.

Figure 3.10: Prediction results of Forrester’s WORLD2 model for births,
deaths and population size

Problems and an outlook

It is interesting to see what happens when Forrester’s world model, with
its standard parameter set, is used to ‘retrodict’ births, deaths and world

Problems and an outlook 51

population backwards in time (see Figure 3.11). We see immediately that
there is a problem, because during the last two decades of the nineteenth
century the world population is ‘predicted’ to have decreased from 6 billion
in 1880 to the historical 1.7 billion in 1900, which was obviously not the
case.

Figure 3.11: Retrodiction of Forrester’s WORLD2 model back to 1880

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001 2011 2021 2031 2041 2051 2061 2071 2081 2091

Population Births * 10 Deaths * 10

It is difficult to find the cause of this erroneous ‘retrodiction’. Zwicker
(1981: 481) points out that with a slight modification of the dependence of
the death rate multiplier for material life standard (DeathRateMaterial-
Multiplier) on the material life standard (MaterialStandardOfLiving)
the retrodiction is much more plausible. He changed the first entry in the
DeathRateMaterialMultiplier table function from 3 to 1.8,

DeathRateMaterialMultiplier = GRAPH(MaterialStandardOfLiving)
(0.00, 1.80), (0.5, 1.80), (1.00, 1.00), (1.50, 0.8),
(2.00, 0.7), (2.50, 0.6), (3.00, 0.53), (3.50, 0.5),
(4.00, 0.5), (4.50, 0.5), (5.00, 0.5)

and obtained a more or less correct ‘retrodiction’ of the total population
for 1880 and, moreover, a birth rate above the death rate back to 1888 (see
Figure 3.12).

The high dependence ofDeathRateMaterialMultiplier on

52 System dynamics and world models

Figure 3.12: Retrodiction of Forrester’s WORLD2 model back to 1880, with
a slight correction ofDeathRateMaterialMultiplier

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

6.E+09

1881 1891 1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001 2011 2021 2031 2041 2051 2061 2071 2081 2091

Population Births * 10 Deaths * 10

MaterialStandardOfLiving for low values of MaterialStandard-
OfLiving (at the eve of the twentieth century) is responsible for this effect.
Eliminating this high dependence cancels the effect without changing the
model for the twentieth and twenty-first centuries.

Table functions can thus be dangerous – we should not forget that a
table function is a fairly raw means of representing the dependence of one
variable on another. In many cases, modellers have only a rough notion of
this dependence and a notion such as ‘the more ofx, the fastery increases’
may be represented by an infinite number of different continuous or table
functions. Hence, modellers may fall into the ‘trap of tractability’ (Doran
and Gilbert 1994: 13) when they select their representation of a monotonic
dependence: a linear dependence is always the simplest form of a monotonic
dependence, and it is easily tractable by mathematical algorithms, but so-
lutions will usually be different for linear dependencies as compared with
different nonlinear ones. This was one of the reasons for introducing so-
called ‘qualitative differential equations’ (Kuipers 1994: 3) into the mod-
elling and simulation scene. The only type of knowledge used in qualitative
simulation is in terms of intervals between ‘landmarks’ – for example, the
interval between the melting point of ice and the boiling point of water – and
in terms of monotonically increasing and decreasing functions. Qualitative
simulation has so far mostly been applied to physical phenomena (‘naı̈ve

Problems and an outlook 53

physics’), and only seldom to social phenomena (but see Brajnik and Lines
1998), so we will not go into the details of this new approach.

Another shortcoming of Forrester’s WORLD2 is the fact that the popu-
lation is always seen as a whole and that its age structure is not considered at
all. A changing age structure, however, will affect both birth and death rates.
Thus, Meadows’ WORLD3 was a step forward in so far as this world model
contained four different level variables for the age groups 0–14, 15–44, 45–
64 and 65+, with different death rates and birth rates depending only on the
population aged between 15 and 44. However, the model did not distinguish
between men and women.

What is still missing even in WORLD3 is a differentiation between
regions of the world. Birth and death rates as well as many other variables
vary greatly between different continents, countries and even regions within
countries. This is why as early as in the mid-1970s a new effort was launched
under the name of GLOBUS: ‘the construction of an all-computer, nation-
based, political world model from empirical data – something which did not
then exist anywhere in the world’ (Deutsch 1987: xiv). GLOBUS is a model
that consists of interacting component models for each of 25 different nations
with their own demographic, economic, political and government processes
whose interactions are separately modelled. This type of model is far beyond
system dynamics, so we will not discuss it in any further detail.

GLOBUS overcomes one of the most important shortcomings of the
system dynamics approach. System dynamics describes the target system as
a single entity or object. A system dynamics model is an indivisible whole.
If we happen to find parts in the target system (like continents or countries
in the world) we have to describe their properties as attributes of the world
model and thus leave the system dynamics approach – as GLOBUS did.

Although the GLOBUS group never continued their research after
their book appeared and after MicroGLOBUS (a DOS-based demonstration
model) had been distributed, there are other groups who followed similar
approaches. The ‘International Futures’ Group (Hughes 1999) developed a
model encompassing all major states of the world (which can be aggregated
arbitrarily into regions.3 Population is modelled in five-year cohorts, several
economic sectors, food types, land types, energy types and types of govern-
ment spending can be distinguished. Thus the International Futures model is,
of course, much more detailed than the classical world models by Forrester
and Meadows, and even more detailed than the GLOBUS model in so far

3The downloadable demonstration and student version,http://www.du.edu/∼
bhughes/ifswelcome.html, comes with nine individual countries, the European Union
and seven regions such as ‘Other Europe’.

54 System dynamics and world models

as the latter encompasses only 25 nations plus the ‘rest of the world’, has
a coarser-grained age structure, which is exogenously determined, just to
name a few differences.

Further reading

There are many books dedicated to the system dynamics simulation ap-
proach, beginning with

• Forrester, J. W. (1980):Principles of Systems, 2nd preliminary edn.
MIT Press, Cambridge, MA (1st edn 1968).

which first introduced the technique. It includes a number of technical de-
tails about an early version of DYNAMO and some simple examples. This
technique was first applied by

• Forrester, J. W. (1971)World Dynamics. MIT Press, Cambridge, MA

to world models of the type we discussed earlier in this chapter, and

• Forrester, J. W. (1969)Urban Dynamics. MIT Press, Cambridge, MA

applied system dynamics to ‘the problems of our ageing urban areas’, intro-
duced a model of an urban area and predicted over 250 years its future devel-
opment in the unemployment, labour, managerial and professional sectors as
well as in the housing, industry, tax and town planning sectors. Forrester’s
first book on related topics,

• Forrester, J. W. (1961)Industrial Dynamics. MIT Press, Cambridge,
MA

has enjoyed a wide readership and stimulated research on complex systems.
The original DYNAMO manual was

• Pugh, A. L. III (1976)DYNAMO User’s Manual. MIT Press, Cam-
bridge, MA

which has since been superseded by more modern versions of the DYNAMO
language.

Another influential group of books began with the introduction of a far
more sophisticated world model in

• Meadows, D. L.et al. (1974)Dynamics of Growth in a Finite World.
MIT Press, Cambridge, MA.

Further reading 55

This described the world population in different age groups, distinguished
between industrial and service capital, and went into more detail concerning
land use and fertility. Its results are discussed from a 1990s perspective in

• Meadows, D. H.et al. (1992)Beyond the Limits. Chelsea Green, Post
Mills, VT.

This book states that the original model needed only very few corrections,
after the data produced by the target system – the world as it behaved in the
1970s and 1980s – were taken into consideration.

A comprehensive description of system dynamics oriented simulation
methods in the social sciences is provided by

• Hanneman, R. A. (1988)Computer-Assisted Theory Building. Model-
ing Dynamic Social Systems. Sage, Newbury Park, CA.

He does not so much address a special target system (like Forrester and
Meadows always did, writing about urban or industrial or world develop-
ment), but rather has ‘the immodest goal of reorienting how many social
scientists go about building and working with theories’ (p. 9), thus making
simulation a new methodological paradigm for the social sciences, restrict-
ing himself, however, to macro and other equation-based models throughout
the book.

An extensively comprehensive description of system dynamics oriented
simulation mostly, but not only, in business research was recently published
as

• Sterman, J. D. (2000)Business Dynamics: Systems Thinking and Mod-
eling for a Complex World. McGraw-Hill, New York, NY.

It comes with a CD-ROM with modelling software from Vensim, ithink and
PowerSim dedicated to ‘issues such as fluctuating sales, market growth and
stagnation, the reliability of forecasts and the rationality of business decision
making.’ (from the blurb)

More recent world models are presented and discussed in

• Bremer, St.A. ed. (1987)The GLOBUS Model. Computer Simu-
lation of Worldwide Political and Economic Developments, Cam-
pus/Westview Press, Frankfurt/M. and Boulder, CO.

which is the summary of work done in the GLOBUS project which devel-
oped a world model ‘based on nation-states, not regions’ while

• Hughes, B.B. (1999)International Futures: Choices in the Face of
Uncertainty, Westview Press, Boulder, CO.

56 System dynamics and world models

in a way continues this work in so far as it presents a more modern (Windows
compatible) type of multi-nation world model which can be downloaded
from http://www.du.edu/∼bhughes/ifswelcome.html.

The qualitative simulation approach briefly mentioned on page 52 is
discussed in detail in

• Kuipers, B. (1974)Qualitative Reasoning. Modeling and Simulation
with Incomplete Knowledge, MIT Press, Cambridge, MA.

Chapter 4

Microanalytical simulation
models

As discussed in the previous chapter, system dynamics models its target
systems as indivisible wholes and does not take into account the fact that
for the social scientist target systems usually consist of individual persons,
groups, classes, subpopulations and so on. Social scientists will therefore be
interested in modelling approaches on several levels – an aggregate level and
at least one lower level. The first approach that tried to solve this problem
was the classical microsimulation approach. It has been used to predict the
individual and group effects of aggregate political measures that often apply
differently to different persons. For instance, a tax formula that imposes taxes
only on persons with incomes above a certain threshold might be changed
by moving this threshold. If we want to calculate the gross effect on the total
tax revenue, a simulation on the macro level cannot help. We must instead
go back to the individual cases, calculate their taxes due before and after the
tax revision, and reaggregate the tax revenue.

Another example can be taken from demography. Changing age struc-
tures of a population can be simulated on a macro level – see the discussion
on page 53 in Chapter 3. We would have several level variables with the sizes
of a number of sex/age groups to which we would apply age-group-specific
death rates, and we would calculate births from the sizes of the female age
groups between 15 and 45 years of age, applying age-dependent fertility
rates. If we were only interested in the age structure of a population, this
deterministic macro model might be sufficient because, with a very large

58 Microanalytical simulation models

number of persons, all random influences on individual births and deaths
(and other events that might be of interest) would be averaged out. But
if we wanted to use additional information, say on different fertility rates
for different education levels, we would need a very complicated system
dynamics model with a large number of level and rate variables that could
not be decomposed or otherwise simplified.

The microsimulation approach overcomes this problem by going to the
individual level, modelling individual persons with a number of attributes
(such as sex, age, marital status, education, employment) and a number of
transition probabilities. This makes up a stochastic micro model, as opposed
to the deterministic macro model of the system dynamics approach. In
simple cases, especially in demography, both approaches will produce ap-
proximately the same result – both models would yield the same prediction
for the age structure, given that the birth and death probabilities of the macro
model are compatible with the respective probabilities of the micro model.

Most microanalytical simulation models (MSMs) aim to predict the
effects of (and thereby support) social and financial policy (for a number
of examples, see the ‘Further Reading’ section of this chapter).

In general, the MSM procedure is as follows (see Figure 4.1, cf. also Fig-
ure 2.2). We start with a target population from which we draw a representa-
tive sample and collect data about some selected properties of its members.

Figure 4.1: General features of microanalytical simulation models

Target
population

with all
properties

- - - - -
real process

simulation
-

6

sampling projection

?

Target
population

after influences
analyzed

Representative
sample with

selected
properties

Predicted
hypothetical
sample with

selected
attributes

Microanalytical simulation models 59

This sample serves as a model of the population. The data are entered into
a database (the microdata file). Its rows (‘cases’ or ‘objects’) correspond
to the individual members of the sample, and its columns (‘variables’ or
‘attributes’) correspond to the selected properties. Then the microdata file is
updated (‘simulated’), that is to say, transition probabilities are applied to the
individual cases. For each simulation step, this procedure yields a predicted
hypothetical sample. After a number of steps, the microdata file is projected
(or ‘grossed up’). This projection yields an estimation of the structure of the
target population after some time has passed.

Microanalytical simulation models consist of at least two levels: the level
of individuals or households (or the level of enterprises) and the aggregate
level (for example, the population or national economy level). More sophis-
ticated MSMs distinguish between the individual and the household levels,
thus facilitating models in which persons move between households and can
create and dissolve new households (for instance, by marriage and divorce).

Since MSMs usually use ‘available detailed information about the initial
state of microunits such as persons and families’ (Orcutt 1986: 14), they
are not only extremely data-based but also very demanding as far as the
data collection requirements and the necessary computing and data storage
capacity are concerned. A representative sample of a population will easily
contain several thousand households because its subsamples with respect
to all property combinations relevant to the purpose of prediction have to
be large enough to allow projection. All the members of these households
have to be interviewed and the data have to be stored, taking into account
that some of the relevant properties have to be represented by household
attributes, whereas others have to be represented by individual attributes. The
necessary storage capacity is proportional to the number of microunits rep-
resented in the model, and computing time may be proportional to the square
of this number, at least where marriage and kinship relations are simulated.
In the 1970s and early 1980s, these demands resulted in a small number
of MSMs, which were then run on large mainframe machines, making them
accessible only to a few specialists. As a result, user-friendly tools to perform
microanalytical simulation have not been developed until very recently. Only
20 years ago, the state of the art was described as follows: ‘There is no uni-
versal general-purpose microsimulation software available . . . most MSMs
are developed in a conventional way from scratch’ (Klösgen 1986: 485–
486). Microanalytical simulation models had to be programmed in a general-
purpose language such as FORTRAN or PL/1 (because general-purpose
language programs can be fine-tuned for computational efficiency). The use
of general-purpose languages and mainframe computers made maintenance

60 Microanalytical simulation models

a task for programming specialists. Nowadays, however, workstations and
even personal computers are sufficiently powerful to run quite large MSMs
and more user-friendly software has begun to emerge.

Methodologies

Models simulating the household (individual) sector begin from microdata
collected from a representative sample of the population, often including
several thousand households. The microdata file typically includes data
about age, marital status, participation in education and employment, income
from various sources, consumption, wealth and taxes for every member of a
household at the time the data were collected.

Before a microdata file can be used for simulation it has to be updated –
the microdata file may be several months or even years old when it is used
for simulation purposes, and the percentages of income classes, age cohorts
and so forth may have changed (or the sample may have been biased from
the very beginning, due to different response rates in the respective classes).
This is typically done by reweighting the individuals or households in the
sample so that the weighted samples represent the current distributions of
the attributes in question.

There are several different methodologies for MSMs.

Static microsimulation

In static microsimulation the demographic structure of the model population
is changed by reweighting according to external information – that is, each
individual data record in the microdata file is given a different weight for
different years, so that the weighted file displays the age structure for all
years; the same can also be done for other classifications, such as income.

Static microsimulation is usually applied to short-term predictions of the
immediate impact of a policy change. It answers questions such as ‘What
increase in government revenues is to be expected if the income tax rate is
changed in a certain manner?’ All other influences are kept equal in this
case. Static microsimulation may include hypotheses about how people’s
behaviour changes in response to the policy change. For example, if the tax
on luxury goods were sharply increased, people might abstain from buying
goods of this type, which would in turn reduce the government’s revenue
instead of increasing it.

Methodologies 61

Dynamic microsimulation

In dynamic microsimulation the demographic structure of the model popu-
lation is changed by ageing the model persons individually (and by having
them give birth to new persons, and by having them die) according to life
tables. Individuals and households change their attributes at every time step,
and birth and death can be explicitly modelled. Hence, the demographic
structure of the microdata file changes endogenously, and the same applies
to all the other attributes in question such as participation in education,
employment and income.

Dynamic microsimulation is usually applied to the long-range prediction
of demographic change and its effect on social security expenditures and
incomes, and the redistributive impact of the social security system.

Longitudinal microsimulation

In longitudinal microsimulation simulation is done on an age cohort and over
the whole life of this cohort, thus omitting a population’s age structure (but
children of the cohort members may still be simulated).

Longitudinal microsimulation (or dynamic cohort) models are quite sim-
ilar to dynamic population models. However, they start from a microdata file
that includes only one age cohort. The microunits of this file are then aged
such that an entire life cycle is simulated. This might be sufficient to detect
the redistributive impact of the social security system. The model would for
instance give answers to questions about whether and to what extent the
mean individual is a winner or a loser over his or her entire lifetime, and
which type of individual is a loser or a winner.

Subprocesses within household MSMs

Simulating a population sample dynamically over a number of years is only
possible if a number of different processes are modelled (see Figure 4.2 for
a rough sketch of these processes in six households with 15 individuals).
The simplest process to be modelled isageing: in each simulated year, every
individual’s age is increased by one year (assuming that it survives during
this year). Age-dependentdeath probabilities are then applied to decide
whether a particular individual survives during the actual simulation year.
Birth is considerably more intricate, because births have to occur within a

62 Microanalytical simulation models

Figure 4.2: Subprocesses within households

Household 1 2 3 4 5 6

time t
27, f
job

31, m
job

38, f
job

45, m
job

65, m
job

83, m
pension

ageing
28, f
job

32, m
job

39, f
job

46, m
job

66, m
job

84, m
pension

death
28, f
job

32, m
job

39, f
job

46, m
job

66, m
job

84, m
pension

birth
28, f
job

32, m
job

39, f
job

46, m
job

66, m
job

84, m
pension

divorce
28, f
job

32, m
job

39, f
job

46, m
job

43, f
wife

66, m
job

84, m
pension

marriage
28, f
job

32, m
job

39, f
job

43, f
wife

66, m
job

84, m
pension

employment change
28, f

mother

32, m
job

39, f
wife

43, f
job

66, m
pension

84, m
pension

time t + 1 28, f
mother

32, m
job

39, f
wife

43, f
job

66, m
pension

84, m
pension

At the beginning of yeart, the situation is represented by the
households shown in the top row. In theageingstep, all persons’
ages are increased by one. In thedeath step, two people, in
households 5 and 6, die. In thebirth step, children are born into
households 1 and 2. In thedivorcestep, household 4 is dissolved
into a single male and a new household consisting of his ex-wife
and their two children. In themarriagestep, the two singles form
a new household. In theemployment changestep, the new mother
in household 1 and the newly married wife give up their jobs, the
newly divorced wife gets a job, and the two older persons retire.
Thus at the end of the simulated year, the situation is as in the
bottom row.

Methodologies 63

sample household. A simulated child is born into a household with a certain
probability depending on (among other things) the age, nationality and social
status of the potential mother.Divorceis also modelled on a stochastic basis:
divorce rates may depend on the duration of the marriage, on the ages of the
spouses, on their social status, and on their religion. Divorce will result in the
dissolution of one household into two new households. Modellingmarriage
is even more complicated, because typically a new simulated household has
to be built from two individuals who have in turn to leave their former
households, and the two simulated spouses have to be selected from all
marriageable individuals.

During their lifetimes, the simulated individuals have to change their
educational andemploymentstatus. They will enter school with different
probabilities when they are 5–7 years old, and they will leave school with
different probabilities when they are between 14 and 20 years old, they will
be employed in different jobs, lose their jobs, earn an income that depends on
their type of job, and eventually retire with different probabilities depending
on their ages.

Simulated individuals will receive social transfers, according to their
income and employment status, and pay taxes and social security according
to their income. They will use their income for consumption purposes or
save part of it.

All probabilities applied in the model have to be calculated from em-
pirical data; they may be kept constant over the simulation run, or change
over time. Calculating these transition probabilities may be very difficult.
The probability of pregnancy depends on such factors as age, marital status,
employment status and education, but while birth statistics in most countries
will indicate how many children were born to women of different ages and
marital status, they might fail to give information about their employment
status and their education; hence the interaction between these attributes
cannot completely be adjusted for. The probability of death also depends
on age and a number of other attributes, but while an age-dependent death
probability may easily be estimated from available tables, this is not the
case for most other attributes. Birth and death probabilities may change over
time due to cultural and technological changes and to progress in medicine.
For example, age-specific fertility rates have changed considerably over the
last 30 years, an effect that cannot be explained by only taking into account
changes in women’s education and employment. Some transition rates can
only be obtained from longitudinal data.

64 Microanalytical simulation models

Subprocesses within enterprise MSMs

In the case of enterprise MSMs, the microunits are firms. Starting from a
sample of firms and their most recent balances, for every firm a number of
subprocesses have to be run: the potential sales on the product market have
to be estimated as a function of prices; the production capacity is calculated;
and the production is adapted to the expected sales. Investment has to be
done if the production capacity does not cover the expected demand, inven-
tion and innovation may occur, and products have to be bought and sold on
the market.

Initialization

The initial states of MSMs are read from databases in which individual
and/or household and/or enterprise characteristics are derived from an em-
pirical sample.

If a microsimulation model is to include both households and enterprises,
it is difficult to obtain representative data for both household and enterprise
sectors at the same time. With a fixed household sample, enterprise data
would be collected from those enterprises that employ the members of the
household sample. Typically, this enterprise sample would not be represen-
tative of the economy as a whole, and the same would apply if one started
with an enterprise sample and collected data for all the employees of the
sample enterprises (and their household members). This is why, in the rare
combined models, the household sector is linked to econometric macrodata
(see below).

In a number of countries, it is becoming easier to obtain time series data
for individuals and households (for example, the German Socio-Economic
Panel since 1984, and similar panels in Belgium, the United Kingdom,
the Netherlands, Luxembourg, Hungary, the United States, Sweden and,
recently, Russia). If data are available from household panels, then it is
possible to calibrate model parameters and algorithms using these data. The
representativeness of panels is, however, a greater problem than in the case
of simple one-time samples because the drop-out of panel members usually
induces bias. Evidence from the German Socio-Economic Panel shows that
over the first seven waves (1984 to 1990), 61.2 per cent of the interviewees
of the first wave remained in the sample and are available for ‘complete case
analysis’ (Hauseret al.1994b: 94–98).

Software 65

Linkage between macro models and MSMs

MSMs restricted to the household sector must be linked to econometric
macro models that make their data available to the individual level. For
example, the probability of losing one’s job depends not only on individual
or household attributes but also on macroeconomic effects that might not be
apparent from the MSM itself; individual consumption characteristics may
also depend on macroeconomic factors. The same is true for pure enterprise
sector MSMs and for combined household–enterprise models.

Software

Microanalytical simulation models were originally developed as general-
purpose language programs that could only be written, changed and main-
tained by programming specialists, but in recent years several MSMs have
been developed which can be run on workstations and personal computers.
Some examples are

• MICSIM 3.x, for Windows 3.x/NT/95, using Visual C++ and
ORACLE (Merz 1996);
• UMDBS, for Windows NT/2000/XP, with its own programming lan-

guage (MISTRAL) and query language 2002 – see below andhttp:

//www.fh-friedberg.de/sauerbier/umdbs (Sauerbier 2002) –
which was developed from the older Darmstadt Micro Macro Simu-
lator (Heikeet al.1996);
• STINMOD (Lambertet al. 1994) and DYNAMOD (Antcliff 1993),

for Windows (National Center for Social and Economic Modeling, see
http://www.natsem.canberra.edu.au/index.html and Brown
and Harding 2002);
• CORSIM (Caldwell 1993); see also http://www.

strategicforecasting.com/corsim/.

Most of these follow the updating procedures described above, stepping from
one year (or month) to the next. DYNAMOD seems to be the first MSM to
use discrete event simulation features (see Chapter 5) – components of the
model are only evaluated when there is a change in attributes. To put it more
explicitly, take a person in the microdata file who is employed in a certain
job. Instead of applying a probability to decide whether this person loses his
or her job in each given year, the time until he or she she loses his or her job
is taken from an appropriate random distribution (which, of course, has to be

66 Microanalytical simulation models

estimated from empirical data) at the time he or she starts his or her job, and
without any annual calculation he or she is removed from his or her job at
the ‘predicted’ time (for more details, see Antcliff 1993; Galler 1997).

Examples

A static microsimulation of the impact of a tax reform

Our first example looks at what might be the impact of an income tax
reform. We start with a sample of households of which only the yearly
taxable income (and information relevant to taxation, such as marital status
and number of children) need be known, and we require the gross effect of
the change in tax rates and the effects of the tax reform on different types
of households. We will use data from 1995 wave of the German Socio-
Economic Panel (GSOEP).1 The sample consists of 6214 persons whose
income distribution is similar to the real income distribution of Germany
in the mid-1990s.

In more detail, GSOEP 1995 consists of 13,511 records of individual
interviewees in 6894 households. Of these interviewees, 6214 were taxable
persons according to German tax law (married couples count only as one tax-
able person, see below) and gave sufficient information about their personal
income (including, if applicable, their spouse’s income). Only these 6214
interviews were reweighted according to the national tax statistics of 1995, as
published in the German statistical yearbook (Statistisches Bundesamt 2001:
544). The statistical yearbook contains a table which lists the numbers of
taxable people in different (gross) income classes. Since even in this detailed
survey not all information on income and taxes is given, data taken from
GSOEP and data from the national tax statistics are not fully comparable,
but for the purpose of an example the difference is negligible. In terms
of the German tax declaration conventions, ‘gross income’ is the sum of
all types of income (whereas the data include only labour income) minus
the sum of all costs related to earning one’s income (for instance, public
transport tickets for commuting or the subscription to professional journals
and so forth), ‘income’ is gross income minus reductions for contributions
to pension funds, health insurance etc., whereas ‘taxable income’ is income

1The data used in this chapter were made available by the German Socio-Economic
Panel Study (GSOEP) at the German Institute for Economic Research (DIW), Berlin.

Examples 67

minus reductions for children.2 The GSOEP data do not contain precise
information on all types of reductions, so the three stages of income are
estimated from the gross income reported by the interviewees, the relation
between gross income and income in the national statistics, and the number
of children.

Taxable persons are divided into 18 classes. For the purpose of this
example the upper six classes are grouped together. Hence, our simulation
considers only 13 classes (see Table 4.1).

Table 4.1: Taxable persons 1995 in the German national statistics and in the
GSOEP sample: total income

Tax Total gross Cases Mean gross
class income (DM) income (DM)

National Sample National Weighted
statistics statistics sample

1 1–4,999 1,145,008 581 2,580 1,515
2 5,000–9,999 1,274,868 369 7,593 7,414
3 10,000–14,999 1,489,169 405 12,481 12,354
4 15,000–19,999 1,309,984 461 17,412 17,197
5 20,000–24,999 1,227,877 633 22,497 22,611
6 25,000–29,999 1,333,681 586 27,528 27,343
7 30,000–39,999 3,136,635 1,265 35,197 35,052
8 40,000–49,999 3,619,401 959 44,999 44,829
9 50,000–59,999 3,105,688 457 54,758 54,340
10 60,000–74,999 3,252,768 376 66,997 66,588
11 75,000–99,999 3,383,398 149 86,117 86,285
12 100,000–249,999 3,126,897 70 134,452 127,219
13 250,000+ 277,705 4 571,686 376,011
All classes 27,683,079 6,315 59,609 56,644
All classes, total income in billion DM 1,650 1,568

Sample households have to be weighted because the income structure of
the sample differs from the income structure of the total taxable population
as given in the statistical yearbook. In class 4, for instance, the weighting
factor will be 1,309,984/237 = 5527.35865 – which roughly means that 237
interviewees in this income class represent 1,309,984 taxable persons in the

2German tax law is in fact much more complicated, but these three stages might do for
the purpose of an example.

68 Microanalytical simulation models

national statistics. Even after reweighting, there remains a difference in the
mean incomes of about 8.5 per cent, due to the fact that the top income class
is only sparsely represented,3 but the estimates in classes 2 to 11 are quite
reasonable (with biases below 3 per cent). The reweighted sample can now
serve as a rough approximation to the total taxable population.

If we now apply the tax regulations that were in force in 1995 we should
arrive at an estimate of the total and individual tax loads (see Table 4.2). And
if we apply the tax regulations that came into force for 1996 (with a minor
tax reform in October 1995) or 2004 (with a major tax reform in December
2002) or that are currently being discussed for the longer-term future we
should be able to predict the impact of those proposals.

Let us assume we have prepared our data file with the necessary weight
variable as explained above and that we analyze it with the help of the well-
known Statistical Package for the Social Sciences (SPSS). SPSS is normally
used for statistical analysis, rather than for microsimulation. Nevertheless,
because it will be available to most readers and appropriate at least for a
simple microsimulation example, we use it here. The SPSS variabletaxinco

represents the adjusted taxable income (which is less than the total house-
hold income because there are many allowances that need to be taken into
account).

The complicated German tax and social security laws do not really allow
an estimation of gross and taxable income if one only knows the gross
income from the GSOEP data. To calculate the taxable income, the gross
income has to be reduced by a large number of allowances and deductions
which differ between types of persons and households. These allowances and
deductions include, for instance, part of the social security contributions, but
also allowances for children (the only allowance which will be considered
here), old age, the cost of education, expenditure on commuting between
home and job, and many more.

Hence,taxinco is constructed by using the information from the na-
tional tax statistics about total income and taxable income. After adjusting
for all the allowances that we are not considering separately in our simula-
tion, Table 4.1 has to be modified – see the ‘mean taxable income’ column
in Table 4.2 which reproduces exactly the national statistics in the adjusted
sample.

This step, which leads to the variabletaxinco, allocates taxable income
values to all the sample households which conform to the national statistics.

3In fact, there are only 13 households with an income above DM 250,000 in the GSOEP
sample. Since the 2002 wave an extra high-income sample was interviewed, but data from
the national tax statistics for 2002 will only be available in a couple of years.

Examples 69

Table 4.2: Taxable income and taxes 1995 (DM) due according to the 1990–5
tax laws (national statistics and GSOEP sample)

Tax Total Mean Mean tax due
class gross income taxable

income
National National Sample
statistics statistics

1 1–4,999 1,230 14 0
2 5,000–9,999 4,145 76 0
3 10,000–14,999 7,338 264 271
4 15,000–19,999 10,362 750 645
5 20,000–24,999 13,827 1,467 1,246
6 25,000–29,999 18,133 2,273 2,148
7 30,000–39,999 25,283 3,763 3,676
8 40,000–49,999 33,255 5,543 5,313
9 50,000–59,999 40,770 7,214 6,875
10 60,000–74,999 51,622 9,655 9,408
11 75,000–99,999 68,891 13,839 13,605
12 100,000–249,999 112,946 27,825 27,766
13 250,000+ 520,758 213,860 235,589

All classes

National statistics 46,867 10,303
Sample 44,245 10,354

Total income and tax revenue (billion DM)

National statistics 1,297 285
Sample 1,297 287

Hence, our microdata file could be considered to be ‘semi-synthetic’ in so
far as each household is allocated a taxable income which is only loosely
related to its gross income as reported in the GSOEP sample. On the other
hand, each household still bears all characteristics (such as marital status and
number of children) from the original sample.

In the next step, tax calculation is done. The applicable formula depends
on the number of children and the marital status of the taxable person. For
each child there is a certain allowance. For married couples (most of whom
are taxed together) the tax formula is applied in a special way. German tax
law assumes that all the earnings of wife and husband are equally divided

70 Microanalytical simulation models

between them (even if one of them has no income at all), then each is taxed
according to the general formula, and finally their taxes are summed, so that
the tax is twice the amount that would result if the formula had been applied
to half the taxable income.

In SPSS, this is formulated as follows (married is 1 for households with
a married couple and 0 for singles,children is the number of children in
the household,x1 is the taxable income after children’s allowances have
been deducted,4 x andtax90 are temporary variables used to model the tax
split procedure for married couples, andy90 is another temporary variable
used to model the progressive tax rates in the so-called progression zone of
the German tax rate):

* if (married = 0) x1 = taxinco-children*1512.
* if (married = 1) x1 = taxinco-children*3024.
compute x1 = taxinco .
if (x1<0) x1 = 0.
if (married = 1) x = x1/2.
if (married = 0) x = x1.
if (x<=5616) tax90 = 0.
if (x>5616 & x<=8153) tax90 = 0.19*x - 1067.
if (x>8153 & x <= 120041) y90 = (x - 8100)/10000.
if (x>8153 & x <= 120041) tax90 = (151.94*y90 + 1900)*y90 +
472.
if (x>120041) tax90 = 0.53*x - 22842.
if (married = 1) tax90 1 = tax90*2.
if (married = 0) tax90 1 = tax90.

This piece of code models the tax rates. Taxable incomes below DM 5616
are not taxed. Between DM 5616 and DM 8153 there is a proportional
tax zone with a 19 per cent marginal tax rate. Between DM 8153 and
DM 120,041 there is a progressive tax zone with a marginal tax rate rising
from 19 to 53 per cent (the increase in the marginal tax rate is quadratic),
while above DM 120,041 another proportional tax zone begins with a 53 per
cent marginal tax rate.

Table 4.2 shows that the GSOEP sample is fairly representative, although
the mean tax dues in the lower-income classes differ considerably from the
mean tax dues from the official statistics. This is due to the fact that the

4Note that the first two lines of the code are not actually used because the calculation
of taxinco has already taken account of this type of deduction, but if we want to redesign
children’s allowances we will have to recalculatex1.

Examples 71

distribution of marital status in some of the tax classes of the sample differs
from the distribution in the entire taxable population. On the other hand, the
total income tax revenue is estimated with an error of only about 3 per cent.
This will do for our example.

The 1995 tax reform (which was approved by the national parliament in
1995 and came into force in 1996) made the tax schedule more complicated
in so far as the progressive zone was split into two such zones (after they had
been combined in 1988 with effect for 1990), with a maximum marginal tax
rate of 53 per cent; the first DM 12,095 were exempt from taxes. We model
this as follows:

if (x <= 12095) tax95 = 0.
compute y95 = (x - 12042)/10000 .
compute z95 = (x - 55674)/10000 .
if (x > 12096 & x <= 55727) tax95 = (86.63*y95 + 2590)*y95 .
if (x > 55727 & x <= 120041) tax95 = (151.91*z95 + 3346)*z95 +
12949.
if (x > 120041) tax95 = 0.53*x - 22842.
if (married = 1) tax95 1 = tax95*2.
if (married = 0) tax95 1 = tax95.

Applying the 1995 tax regulations to our semi-synthetic household data
yields Table 4.3. The total income tax revenue was reduced by DM 20 bil-
lion. All income classes (except the highest) profited from the tax reduction:
classes 3 and 4 gained from the extension of the ‘no taxation’ zone, classes
7 to 10 gained most because the difference between the two progressive
tariffs had the greatest effect here, and so on – only class 13 experienced
no changes since the tariff for taxable incomes beyond DM 120,041 had
not been changed. Generally speaking, this type of static simulation allows
detailed analyses of distribution effects of tax revisions.

If we were only interested in simulating the impact of tax regulation
changes on child allowances, marital status, and the formula for calculating
individual tax rates, this simple model would meet all our requirements
(although a larger sample with data for all individual household members
would yield a better representation). Considering all the other allowances
available in the German tax system would necessitate much more infor-
mation about the households, information which is typically not given in
general surveys (not even in the GSOEP data), but which is available from
the tax offices’ databases and documented at the aggregate level in the
statistical yearbook.

72 Microanalytical simulation models

Table 4.3: Taxable income and taxes 1995 (DM) due according to the 1990
and 1995 tax laws (GSOEP sample)

Tax Total gross Mean Mean tax due
class income taxable (sample)

income 1990 1995
(statistics)

1 1–4,999 1,225 0 0
2 5,000–9,999 4,140 0 0
3 10,000–14,999 7,324 269 0
4 15,000–19,999 10,362 645 0
5 20,000–24,999 13,827 1,246 321
6 25,000–29,999 18,133 2,148 1,102
7 30,000–39,999 25,283 3,677 2,472
8 40,000–49,999 33,255 5,313 4,154
9 50,000–59,999 40,770 6,875 5,786
10 60,000–74,999 51,622 9,408 8,553
11 75,000–99,999 68,891 13,605 13,073
12 100,000–249,999 112,946 27,766 27,730
13 250,000+ 520,758 235,589 235,589
All classes 46,832 10,346 9,630
Total tax revenue
(billion DM), sample 1,298 287 267

We can now play with alternatives. Table 4.4 gives the results of two
modifications of the 1990 tax law. In the ‘DCA’ column we have doubled
the allowance for children. This makes no difference for poorer households:
if there are no children in such a household, no difference occurs, and if
there are, then in most cases the split rule will be used. Hence up to an
income of DM 10,000, even the normal children’s allowance reduces the
taxable income below the tax threshold. In the higher-income classes the tax
reduction is quite considerable. The overall loss for the treasury would be
about DM 14.4 billion (most of which would go to rich people with children).

In the ‘no split’ column we have only the standard children’s allowances,
but here we abolish the split rule for married couples. This alternative leads
to a considerable increase in taxes for all income classes. The overall gain
with this measure for the treasury is DM 67 billion, most of which is paid by
richer married couples, while singles are of course not affected.

We have seen in this subsection that it is quite difficult to prepare
a microdata file for use even with static microsimulation. Reweighting –

Examples 73

Table 4.4: Taxable income and taxes 1995 (DM) due according to the 1990
tax law with two modifications (GSOEP sample)

Tax Total gross Mean Mean tax due (sample)
class income taxable DCA No split

income 1990 1990 1990
1 1–4,999 1,225 0 0 0
2 5,000–9,999 4,141 0 0 0
3 10,000–14,999 7,325 269 170 325
4 15,000–19,999 10,362 645 528 911
5 20,000–24,999 13,827 1,246 1,068 1,611
6 25,000–29,999 18,133 2,148 1,891 2,532
7 30,000–39,999 25,283 3,677 3,357 4,193
8 40,000–49,999 33,255 5,313 4,852 6,220
9 50,000–59,999 40,770 6,875 6,302 8,307
10 60,000–74,999 51,622 9,408 8,722 11,640
11 75,000–99,999 68,891 13,605 12,783 17,686
12 100,000–249,999 112,946 27,766 26,725 37,486
13 250,000+ 520,758 235,589 233,247 253,160
All classes 46,832 10,346 9,832 12,767
Total tax revenue
(in billion DM), sample 1,297.5 286.6 272.2 353.7

making the sample representative of income distribution – does not suffice
to yield a representative distribution of household types with respect to other
characteristics of the household, such as marital status and number of chil-
dren. Thus for serious purposes, readers are recommended not to use general
surveys, but special surveys prepared for the purpose of tax (and social
security) simulation, such as the German Socio-Economic Panel (Hauser
et al. 1994b: 70–112), which we used here, and the Family Expenditure
Survey (conducted by the British Office for National Statistics and available
from the Economic and Social Research Council’s Data Archive at the
University of Essex (Eason 1996)). Once microdata files are prepared, static
microsimulation can be done by means of quite straightforward algorithms.

A dynamic microsimulation enquiring into future nursing demand

For an example of dynamic microsimulation we will use UMDBS mentioned
earlier. To give an impression of how this type of simulation is done and

74 Microanalytical simulation models

what kind of results can be expected, we use data from the German Socio-
Economic Panel (2002 wave) and with the help of this toolbox we will give
an answer to the question how many people 60 years or older will have adult
near relatives who could nurse them if they needed care in the middle of the
twenty-first century (to be precise: in the year 2040). To answer this question,
a simple demographic simulation will not do. It is quite easy to predict
the future age structure of a population with a system dynamics simulation
with level variables for the size of a large number of age classes, but this
simulation would not answer the question how many old people would be
able to rely on their near relatives’ nursing.

Table 4.5: Adult relatives of persons above 60, 2002 and 2040 (simulation
results calculated from 2002 panel data and 1985 transition rates)

Year Age group
60+ 60–69 70-79 80+

Cases 2002 7,871 4,040 2,072 759
2040 7,577 3,081 3,118 1,378

Persons with
partner 2002 63.3 74.6 59.7 27.7

2040 43.4 56.8 40.9 18.0

children 2002 72.3 71.5 74.5 70.5
2040 59.6 58.9 66.9 44.6

daughter 2002 51.5 52.0 52.4 47.2
2040 44.0 37.7 48.7 47.5

Persons without
partner/children 2002 13.9 11.8 13.6 22.9

2040 22.4 23.5 21.3 22.4

So for our purpose, we have to simulate a complete kinship network.
All persons must be modelled in a way that allows the recording of who
their children and their brothers and sisters are. The algorithm described on
page 61 and in Figure 4.2 can be used for this purpose, provided we attribute
information about children, brothers and sisters to every person who ever
‘lived’ in this model.

The algorithm is even easier than in Figure 4.2 because we do not need
to consider households. Instead we use only individual data and apply birth,
death and marriage probabilities to update the microdata file year by year.
Birth enters a new individual record into the database (with information

Commentary 75

about mother and father) and updates the father’s and mother’s record with
information about the newborn child. Death marks a person as dead and
removes him or her from the database. Marriage and divorce (or, more gener-
ally, entering and dissolving partnerships) update both partners’ information.
Then, after a number of simulation steps, we can trace kinship relations back
and tell how many living children, brothers, sisters and cousins a person has
at a given time. We can cross-tabulate these numbers of relatives with the
person’s age and arrive at an answer to our question. SPSS could not easily
be used to solve this task although it was adequate for the simpler example on
static microsimulation above. A relational or object-oriented database would
be the appropriate tool, and UMDBS provides us both with a database and a
database manipulation language.

A calculation like this was originally done in a large research project
carried out at the Sonderforschungsbereich 3 (Sfb3) (Galler 1990; Hauser
et al. 1994a: 130–133). It tried to answer the question for the year 2050.
The simulation started from an ALLBUS sample drawn in 1986 and applied
death, birth and marriage rates estimated from 1982–3 data (Hauseret al.
1994a: 132).

In our own example, the numbers for 2002 are taken from the GSOEP
2002 wave. In contrast to the Sfb3 model not only are relatives living in the
same household considered, but so are all children who were ever born to
women in the sample, no matter whether they were part of the panel or not.

The most striking result of this simulation is that some 40 years from
now the percentage of persons above 60 years of age without a partner and
without children will be two times the current percentage, except for the
oldest cohort whose children were already born at the time of the interviews.

Commentary

Although in the context of this book only a brief overview of microsim-
ulation models has been given, the discussion in the first section of this
chapter and the two examples should have shown that microanalytical sim-
ulation models are a powerful means to predict both the short-term and
long-term effects of taxes and transfer policy as well as micro effects of
demographic processes. None of these can be studied with macro methods
alone. Unlike the first efforts in microanalytical simulation in the 1970s, this
type of simulation can be done on workstations, but – with the exception
of UMDBS – toolboxes that could be used in the classroom are still not
available. Hence, building microanalytical simulation models is still a task

76 Microanalytical simulation models

for specialists. Nowadays object-oriented languages such as C++ are used
which enhance portability and maintenance. Models need not be written
from scratch but can at least partially be reused. On the other hand, it
would be quite difficult to design a toolbox for microanalytical simulation
which could cope with the quite different requirements arising from quite
different tax and transfer systems in a large number of countries. The most
recent approach, EUROMOD, funded by the European Commission under
its Targeted Socio-Economic Research Programme from 1998 to 2000, con-
structed a Europe-wide benefit–tax model which, again, is a model, but not
a toolbox (seehttp://www.econ.cam.ac.uk/dae/mu/emodconstr.htm,
Sutherland 2001 and Mittonet al.2000: Chapter 6).

Further reading

There are a number of collections, mostly conference proceedings, which
include articles about microsimulation models, such as:

• Harding, A. (ed.) (1996)Microsimulation and Public Policy, Contri-
butions to Economic Analysis, vol. 232. Elsevier, Amsterdam.

This contains five chapters on static microsimulation from the United King-
dom, Canada, Belgium, the Netherlands and Finland, which cover both tax
and social policy problems. Four chapters incorporate behavioural response,
that is, reactions of the microunits to the political measures simulated in
the respective models taken from Denmark, Sweden, Germany and the
United Kingdom. Another part, with five chapters, addresses the estimation
of lifetime and retirement incomes; examples are taken from Australia, the
Netherlands, Germany, Sweden and Norway. Enterprise microsimulation
is included in four chapters, with examples from Australia, Canada and
Sweden. The last part of the collection addresses the problem of data quality
and the reliability of microsimulation results.

Ten years earlier, another collection of papers devoted to microsimula-
tion appeared:

• Orcutt, G. H.et al. (eds) (1986)Microanalytic Simulation Models
to Support Social and Financial Policy, Information Research and
Resource Reports, vol. 7. North-Holland, Amsterdam.

Besides four introductory chapters and seven concluding chapters on data,
methods and software, it contains 12 chapters on social policy and tax
simulation in the United States, Israel, Germany and Sweden.

Further reading 77

In a number of countries, specialist institutes carry out microanalytical
studies on a regular basis and publish part of their results. In Australia, the
National Centre for Social and Economic Modelling publishes several series
of booklets describing methods, software and simulation results (seehttp:

//www.natsem.canberra.edu.au/index.html).
Another Australian microsimulation group documents their results in

• Creedy, J., and Duncan, A. S. (2002)Microsimulation Modelling of
Taxation and the Labour Market: The Melbourne Institute Tax and
Transfer Simulator.Edward Elgar, Cheltenham.

This book discusses the rationale for the basic modelling approach adopted
and provides information on econometric methods used to estimate be-
havioural relationships. Secondly, it describes the Melbourne Institute Tax
and Transfer Simulator (MITTS) in detail, explaining its main features,
installation and use.

For 12 years, the German Science Foundation funded a Special Collab-
orative Program (Sonderforschungsbereich) on the microanalytical founda-
tions of social policy, whose final report was published in two volumes:

• Hauser, R.et al. (1994a)Mikroanalytische Grundlagen der Gesell-
schaftspolitik. Ausgeẅahlte Probleme und L̈osungsans̈atze. Ergeb-
nisse aus dem gleichnamigen Sonderforschungsbereich an den Uni-
versiẗaten Frankfurt und Mannheim, vol. 1. Akademie-Verlag, Berlin.

• Hauser, R.et al. (1994b)Mikroanalytische Grundlagen der Gesell-
schaftspolitik. Erhebungsverfahren, Analysemethoden und Mikro-
simulation. Ergebnisse aus dem gleichnamigen Sonderforschungs-
bereich an den Universitäten Frankfurt und Mannheim, vol. 2.
Akademie-Verlag, Berlin.

British tax policy is analyzed in

• Redmond, G., Sutherland, H. and Wilson, M. (1998)The Arithmetic of
Tax and Social Security Reform: A User’s Guide to Microsimulation
Methods and Analysis.Cambridge University Press, Cambridge.

This book serves as an introduction to the authors’ POLIMOD microsim-
ulation system and is based on the 1991 Family Expenditure Survey. The
interesting thing about this book is that it tries to find out who were the
winners and losers of British tax reforms since the mid-1970s.

A textbook on microsimulation models was designed to guide future
investment in modelling and analysis capability on the part of the (US)

78 Microanalytical simulation models

government agencies that produce policy estimates:

• Citro, C. F. and Hanushek, E. A. (eds) (1991)The Uses of Microsim-
ulation Modelling. Vol. 1: Review and Recommendations. National
Academy Press, Washington, DC.

Another reader takes stock of the state of microsimulation models by looking
carefully at those in use by US and Canadian government policy offices:

• Lewis, G. H. and Michel, R. C. (eds) (1989)Microsimulation Tech-
niques for Tax and Transfer Analysis. Urban Institute Press, Washing-
ton, DC.

A more general view on microsimulation is given by

• Mitton, L., Sutherland, H., and Weeks, M. (eds) (2000):Microsim-
ulation Modelling for Policy Analysis: Challenges and Innovations.
Cambridge University Press, Cambridge.

It brings together examples of microsimulation modelling that are at the
frontiers of developments in the field, either because they extend the range
of techniques available to modellers, or because they demonstrate new ap-
plications for established methods. It represents the state of the art with
chapters on the use of microsimulation for comparative policy research and
for challenging conventional assumptions, combining microsimulation with
other types of economic models and the much-neglected subjects of model
alignment and validation. Data and case studies are taken from regions
including Asia-Pacific, Europe and North America.

Chapter 5

Queuing models

Queuing models or discrete event models have a long tradition in a wide
variety of sciences. In engineering, workflow management and several other
disciplines, discrete event modelling is nearly synonymous with simulation.
From the point of view of discrete event simulation, a model is a represen-
tation of a system ‘in terms of its entities and their attributes, sets, events,
activities, and delays’ (Kheir 1988: 98). The notion of a system as ‘a collec-
tion of entities that interact together over time to accomplish a set of goals
or objectives’ (Kheir 1988: 98) is quite common (see, for example, Bunge
1979), but the role of the ‘event’ as ‘an instantaneous occurrence in time that
alters the state of the system’ is not central in all the other approaches to sim-
ulation introduced in this book. Differential equation models are continuous-
time models, and system dynamics and microanalytical simulation models
proceed in discrete and equidistant time steps, as is the case in difference
equation models and in the modelling approaches presented in later chapters.
Of course, these time steps are instantaneous occurrences in time that alter
the state of the system, but since they are equidistant, there is nothing special
about them. At each time step event all the system’s state variables are
changed, and the same state transition functions are applied. In discrete event
modelling, events usually change only part of the system’s state, in many
cases just one or very few of the state variables of the system, leaving all
other state variables of the system constant.

As in the rest of this book, the components of a system are called entities,
and these are represented by model objects, and have properties that are
represented by object attributes. The system state is defined by the values

80 Queuing models

of all attributes of all objects, although for some purposes some aggregation
of these attributes or a subset of these attributes might also be sufficient to
describe the state of the system. The system state will only be changed by an
event. Between two consecutive events nothing changes, not even implicitly.

Characteristics of queuing models

In a queuing model, time is neither continuous nor does it pass in equidistant
discrete steps, but it proceeds from event to event. Events are scheduled in a
so-called agenda, a list of all those future events which can be predetermined
at a given time. Past events are removed from this list, and events may
generate new events and insert them into the agenda.

In terms of the queuing metaphor of discrete event models, there are at
least three different kinds of objects, namelyservers, customersandqueues.
Technically speaking, there is one additional object, theagenda, which keeps
track of the events and schedules them.

Queuing models are stochastic. In the queuing metaphor, the time be-
tween customers’ arrivals as well as the time needed to serve a customer are
random, following a certain random distribution.

Discrete event models are dynamic: states of servers, queues and cus-
tomers depend on past states.

Areas of application of queuing models

Table 5.1 gives a few examples of the application of queuing models. Con-
sider, for instance, a bank with a number of counters and clerks serving
customers. At some time there might be more customers than can be served
by the available personnel at the counters. In this case, a new customer,
who arrives at an unpredictable time, queues up in front of a counter and
waits until this counter is free. Then he or she is served – which takes a
certain amount of time that neither the customer nor the clerk knows in
advance. The question that arises is, given some statistical evidence about
the distribution of arrival and service times, how many counters and clerks
should be available to minimize both the customer’s average waiting time
and the clerks’ idle time?

The same considerations apply to the other examples in Table 5.1: pro-
grams wait for the processor to be free, printing jobs wait for the printer to be
free, aircraft wait for the runway to be free for the next take-off or landing,

Characteristics of queuing models 81

Table 5.1: Areas of application of queuing models

Area Server Customer
Bank counter, clerk customer

Computer processor, I/O device program, printing task, user

Airport gate, counter passenger
runway aircraft

Publishing journal manuscripts

Auction auctioneer bids

Law court cases

Public counter, officer client, customer
administration document, application

and in all cases we want to predict how long – on average – a program, a
printing job, or an aircraft must wait until it is served, given certain mean
arrival and service times.

While these are simple examples, we may imagine more complex sit-
uations. A passenger might first queue up in front of the information desk
to enquire about the check-in counter he has to go to. The passenger will
then move to the appropriate check-in counter (which takes some time, the
average of which may be known in advance) where he or she again has to
queue, together with a number of other passengers whose average arrival
time may depend on the number of passenger requests the information desk
can handle per hour. Service at the check-in counter takes some time which
depends on whether the passenger has baggage to check in. After being
served the passengers are sent to the appropriate gate where they arrive after
some time, and so on.

Given that we know the statistical characteristics of all the arrival and
service processes mentioned above, we can set up a schedule of prospective
events of the type ‘passenger A arrives at the tail of the queue in front of
the information desk’, or ‘information desk starts serving passenger C’ or
‘check-in counter ends serving passenger D’. With a large number of events
of this type, a realistic simulation of a working day in an airport can be
established. Such a model proceeds from event to event:

• The event ‘customer arrives’ puts this customer in a queue, and at the
same time schedules the event ‘next customer arrives’ at some time in
the future.
• The event ‘start serving next customer from queue’ takes this customer

from the queue up to the server, and at the same time schedules the

82 Queuing models

event ‘customer served’ at some time in the future.
• The event ‘customer served’ triggers the next event ‘start serving next

customer from queue’.

Between events, nothing relevant happens. Since most events schedule other
events (as in the examples above), the event list is updated every time: the
scheduled event is inserted into the event list at its appropriate position, and
the actual event is removed from the head of the event list.

Ordinary discrete event simulation treats all events separately. In com-
plex models, there will be lots of event routines (which describe what is to
happen at this event) and lots of interactions between event routines (that
is, one event will schedule another). This makes this type of simulation
program difficult to read, to debug, to change and to maintain. More complex
programming styles have been designed to avoid this ‘fragmentation of
model logic’ (Kreutzer 1986: 58):

• Process orientation: the structure and behaviour of one (type of) cus-
tomer are encapsulated in a process which is a life cycle of events; a
process combines all events for one customer; processes are suspended
and resumed at event times.
• Activity orientation: an activity clusters descriptions of state transi-

tions at the start and finish of some time-consuming activity (‘enter
queue’ and ‘leave queue’, or ‘start serve’ and ‘finish serve’).

Principles of queuing theory

Queuing models are often represented by diagrams like that in Figure 5.1.
A source (much like the source in system dynamics diagrams) generates
new customer objects which arrive in the system, join the queue in front
of a server where they wait until they are served by the server. After being
served they leave the system at the sink. Queues and servers are calledstatic
objectsor resources, while customers aredynamic objects. Sources and sinks
represent the environment of the target system.

Figure 5.2 visualizes the airport example. The ‘source’ represents the
world outside the airport from which passengers arrive by car, bus or train.
Their arrival times follow a certain distribution (more below) of which at
least the mean will be known. Considering that arrival times cannot be neg-
ative, some initial assumptions about this distribution are possible. Once the
distribution is known (or reasonably assumed), a random number generator
can output the time of the next arrival event, and this event can be inserted

Characteristics of queuing models 83

Figure 5.1: Diagram of a simple queuing model

��

��

��

��
�
�

�
�source -(customers)

arrive

queue

wait

server

serve

-(customers)

��

��

��

��
�
�

�
�sink

Figure 5.2: Diagram of a SIMPROCESS queuing model of an airport (par-
allel check-in counters and passport counters are not shown)

This model is designed from the point of view of one carrier which
is responsible for a number of check-in counters and one gate and
which has to take into account that other airlines share part of the fa-
cilities of the airport (here: the passport check and transport means);
thus other airlines’ passengers meet this carrier’s passengers only at
the passport check.

in the list of pending events. The same is true for the time the information
desk needs for the average passenger. Hence the random number generator
can output the time at which the service at the information desk will be
completed for this passenger (which is equal to the time at which the next
passenger in the queue can be served).

There will be several check-in counters in a typical airport, so the
information desk must know where to send clients. The minimum time

84 Queuing models

between end of service at the information desk and queuing up in front of
the appropriate check-in counter will depend on the distance between the
two entities (this time might be considered to be constant, but a normal
distribution with a certain mean and a relatively small standard deviation
might also be reasonable). Service time at the check-in counter depends on
whether a passenger wants to check in any baggage.

There will also be several gates in a typical airport. Check-in counters
will send their clients to one of several different gates, and clients arriving
at a certain gate will have been sent from one of several counters (think of
first-class, business and economy check-in counters that serve passengers
for different flights at the same time). Check-in counters must know where
to send their clients, and the minimum time between leaving the check-in
counter and arriving at the gate will depend on the distance between the
two entities. The maximum arrival time is when the aircraft leaves, and the
actual arrival time will be some time between the earliest possible and the
maximum arrival time. Service time for the gate might also depend on, for
example, the passengers’ hand baggage. At the end of the whole process the
passenger is released to the sink, which in this case is the aircraft (where the
passenger leaves the airport and enters the outer world).

Subprocesses

After this more elaborate example, we can return to a more systematic de-
scription of the subprocesses of a discrete event model. Three subprocesses
may be distinguished.

In thearrival processwe can distinguish

• between a finite (and fixed) number of arriving customers, and an
unspecified (mathematically speaking, an infinite) number which is
the usual case;
• between having only one or several types of customers (first-class,

business and economy passengers);
• between the case of only one or several types of customer demands

(for example, passengers with and without luggage);
• whether the arrival distance is deterministic or stochastic (for example,

exponentially distributed), the latter being the usual case (the arrival
rate – arrivals per time unit – is usually calledλ, 1

λ
being the mean

time between arrivals);
• whether the arrival rate depends on the queue length (passengers who

Characteristics of queuing models 85

only want to buy a ticket for a trip next week might return home – that
is, ‘not arrive’ – if they think the queue is too long).

In thewaiting processwe can distinguish

• whether the length of the queue is finite and fixed, or infinite (the latter
is the usual case);
• among several different orders of service, the most usual case being

first in first out (FIFO), where new customers are appended to the tail
of the queue while the customer at the head of the queue is served next.
Another common order of service is the LIFO principle (last in first
out). Service may also be ordered by priorities borne by the customers,
or at random.

Finally, in theservice processwe have to distinguish

• whether only one or several servers are available at the same time and
for the same type of customers and customer demands; the usual case
is with one server per queue, but the case with one queue and several
servers (each of whom calls the next customer from the head of the
queue when it becomes free) is also quite common;
• whether there is only one or a number of types of servers (in a more

complex model we will have many different types of servers in line, or
in parallel, as in the airport example above, where information desk,
check-in counter and gate are different types of counters, and parallel
check-in counters may also be different, for example for first-class,
business and economy passengers);
• between a constant serving rate and a serving rate dependent on cus-

tomer demands (for example, different serving rates at the check-in
counter for passengers with and without baggage);
• between a fixed (deterministic) serving time and a stochastic (random)

serving time (which might be exponentially distributed). The serving
rate (number of customers per time unit) is usually calledµ, 1

µ
being

the mean serving time.

Depending on the combination of alternatives realized in a particular
model, some types of queuing models have an analytical solution. The mean
system load can be determined byρ = λ

µ
. Other interesting parameters are:

N̄ mean number of objects (customers) in the system;
N̄q mean number of objects in queue;
N̄s mean number of objects being served;
W̄ mean waiting time;

86 Queuing models

W̄q mean waiting time in queue;
W̄s mean waiting time at server.

In simple cases, these values can be calculated analytically, but otherwise
they must be determined by simulation experiments. To be analytically
solvable, queuing models must fulfil the following conditions. The arrival
rate must be lower than the serving rate (otherwise queues might grow end-
lessly). Arrival and service processes must obey particular distributions. For
instance, a model with Markov arrival and service processes and any number
of parallel servers has an analytical solution, as has a model with Markov
arrival and general service process and only one server. A Markov process
is a process where ‘the probability of any particular future behaviour of the
process, when its present state is known exactly, is not altered by additional
knowledge concerning its past behaviour’ (Karlin and Taylor 1975: 29; more
details will be found throughout this book).

Software

There are a large number of simulation tools for discrete event simulation.
The earliest tools originated from subroutine libraries in general-purpose
programming languages such as FORTRAN (Schmidt 1987) and PASCAL
(Kreutzer 1986). Later, simulation languages were developed, among them
GPSS, SimScript and CSL. In recent years, there has been a preference
for simulation systems that allow a graphical specification of a model as
well as a number of (possibly animated) simulation experiments and the
statistical and graphical analysis of their results. The following list gives
a few examples:

• SimScript (now in version II.5), SimLab, MODSIM II and SIMPRO-
CESS (http://www.caciasl.com, CACI Products Company 2003
and the examples below);
• SIMPLEX 3 (http://www.or.uni-passau.de/english/3/
simplex.php3 – freeware from the University of Passau and
successor to SIMPLEX II);
• SIMPLE++, now known as emPlant (http://www.emplant.de/

simulation.html);
• Extend 6.0.5 (http://www.imaginethatinc.com/);
• AnyLogic (http://www.xjtek.com/).

Examples 87

Examples

The airport example

The following shows a SimLab queuing model which includes most of the
features of the airport example above.1 We use it to introduce some features
of the SimScript II.5 language. SimScript applies the process-oriented sim-
ulation paradigm briefly discussed above. The simulation program consists
of a number of modules. Some of them are used to describe the different
entities and processes of the model, while others are only used to display
graphics on the screen (we will not discuss these here). SimScript is quite a
straightforward language. Readers with programming experience in general-
purpose languages will be able to build a SimScript model like our airport
model in little more than an afternoon.

The important declarations have to be made in apreamble, which in our
case contains the following statements:

preamble
processes include generator and passenger
resources include InformationDesk, CheckInCounter,

and Gate
accumulate AVG.InformationDesk.Queue.Length as the

average and MAX.InformationDesk.Queue.Length as the
maximum of N.Q.InformationDesk

accumulate AVG.CheckInCounter.Queue.Length as the
average and MAX.CheckInCounter.Queue.Length as the
maximum of N.Q.CheckInCounter

accumulate AVG.Gate.Queue.Length as the average
and MAX.Gate.Queue.Length as the maximum
of N.Q.Gate

accumulate InformationDesk.Utilization as the average
of N.X.InformationDesk

accumulate CheckInCounter.Utilization as the average
of N.X.CheckInCounter

accumulate Gate.Utilization as the average of
N.X.Gate

’’ several definitions needed for graphic output
’’ omitted
define ServedCounter as an integer, 1-dimensional

array
define .First to mean 1
define .Business to mean 2

1Note that AnyLogic comes with a demonstration model of an airport simulation that is
much more sophisticated than the one we discuss here.

88 Queuing models

define .Economy to mean 3
end

The first two lines declare the processes and the resources, and the
next lines (accumulate ...) declare a number of output variables. These
declarations of average and maximum queue lengths and the average re-
source utilizations are readily understandable. With the declaration of a
resource, the number of requests currently waiting, that is, the length of its
queue (N.Q.resource), and the number of requests currently being satisfied
(N.X.resource) are also defined.

Themain module initializes the resources (create every ...) with a
number of instances (let U.resource name= number), activates the first
process, which is thegenerator, and starts the simulation. At this point,
control is given to thegenerator process and its child processes.

main
reserve ServedCounter(*) as 5

’’ an array is declared to hold the number of
’’ passengers served by each resource
create every InformationDesk(1)
let U.InformationDesk(1) = 1
create every CheckInCounter(3)

’’ we need three different kinds of check-in counters
let U.CheckInCounter(.First) = 1
let U.CheckInCounter(.Business) = 2
let U.CheckInCounter(.Economy) = 4

’’ two Business and four Economy counters are created
create every Gate(1)
let U.Gate = 1

’’ all resources are ready
activate a generator now
start simulation

’’ The print statement starts here and extends to the end
’’ of this code segment. ‘thus ...’ is a template for the
’’ printed output.
print 14 lines with AVG.InformationDesk.Queue.Length(1),
MAX.InformationDesk.Queue.Length(1),
InformationDesk.Utilization(1)
* 100./U.InformationDesk(1),
ServedCounter(1),
AVG.CheckInCounter.Queue.Length(.First),
MAX.CheckInCounter.Queue.Length(.First),
CheckInCounter.Utilization(.First)
* 100./U.CheckInCounter(.First),
ServedCounter(2),
AVG.CheckInCounter.Queue.Length(.Business),

Examples 89

MAX.CheckInCounter.Queue.Length(.Business),
CheckInCounter.Utilization(.Business)
* 100./U.CheckInCounter(.Business),
ServedCounter(3),
AVG.CheckInCounter.Queue.Length(.Economy),
MAX.CheckInCounter.Queue.Length(.Economy),
CheckInCounter.Utilization(.Economy)
* 100./U.CheckInCounter(.Economy),
ServedCounter(4),
AVG.Gate.Queue.Length(1),
MAX.Gate.Queue.Length(1),
Gate.Utilization(1) * 100./U.Gate(1),
ServedCounter(5)
thus

Airport with different check-in counters
average queue waiting for information desk is ***.*** passengers
maximum queue waiting for information desk is **** passengers
information desk was busy **.** per cent of the time, served ****
passengers

The queues for the check-in counters were as follows:
type average maximum utilization passengers served
First *.*** * *.** per cent ****
Business *.*** * *.** per cent ****
Economy *.*** * *.** per cent ****

average queue waiting for the gate is ***.*** passengers
maximum queue waiting for the gate is **** passengers
gate was busy **.** per cent of the time, served **** passengers.

end

The last (print 14 lines with ...) statement is executed after the sim-
ulation has stopped. It outputs the result of a simulation run.

The generator process generates a number ofpassenger processes.
Remember that in process-oriented discrete event simulation, all events
belonging to the same type of dynamic object (‘customer’) are encapsulated
in a ‘process’. The following code segment activates a (new) passenger and
then waits for some time – the inter-arrival time – until it activates the
next passenger. In our example, the inter-arrival time is an exponentially
distributed random number with mean 1.5 minutes. For a more thorough
discussion of random numbers for simulation see Appendix C.

process generator
for i = 1 to 1000,
do

activate a passenger now

90 Queuing models

wait exponential.f(1.5, 1) minutes
loop

end

Thepassenger process contains most of the description of our model:

process passenger
define luggage as an integer variable
define randLugg as a real variable
define grade as an integer variable
define randPass as a real variable

’’ determine the class the passenger is booked on
let randPass = random.f(3)
if randPass < 0.10 ’’ ten per cent of all passengers

let grade = .First ’’ fly first class
if randLugg < 0.70 ’’ 70 per cent of first class
let luggage = 1 ’’ passengers have luggage

else
let luggage = 0

always ’’ this is the end of the if clause
else

if randPass < 0.40 ’’ another 30 per cent fly business
let grade = .Business
if randLugg < 0.30 ’’ 30 per cent of business
let luggage = 1 ’’ passengers have luggage

else
let luggage = 0

always
else ’’ and the rest, 60 per cent, fly economy
let grade = .Economy
if randLugg < 0.70 ’’ 70 per cent of economy
let luggage = 1 ’’ passengers have luggage

else
let luggage = 0

always
always

always
’’ now the passenger is ready to enter the airport
request 1 InformationDesk(1)
work exponential.f(1.0, 2) minutes
let ServedCounter(1) = ServedCounter(1) + 1
relinquish 1 InformationDesk(1)
wait uniform.f(5.0, 8.0, 2) minutes
request 1 CheckInCounter(grade)
if luggage = 1
work uniform.f(5.0, 20.0, 2) minutes

else
work uniform.f(2.0, 4.0, 2) minutes

Examples 91

always
let ServedCounter(grade+1) = ServedCounter(grade+1) + 1
relinquish 1 CheckInCounter(grade)
wait uniform.f(10.0, 20.0, 2) minutes
request 1 Gate
work uniform.f(1.0, 2.0, 2) minutes
let ServedCounter(5) = ServedCounter(5) + 1
relinquish 1 Gate

end

The first part of thepassenger process code segment determines which
class the passenger is booked in and whether he or she has luggage to check
in. Here we have assumed that business class passengers have luggage in
30 per cent of the cases whereas 70 per cent of first-class and economy
passengers have luggage.

Passengers first walk to the information desk where they queue up, and
when it is their turn to be served, they spend an exponentially distributed
random time with mean 1.0 minutes (‘work’ means that the information
desk has to work for the passenger). After leaving the information desk
(‘relinquish’) passengers walk to their check-in counters which takes
them between 5 and 8 minutes. From the point of view of the simulation
program, this walking time is waiting time. When passengers arrive at their
check-in counters they can either be served at once or they have to queue
up. In our example there will be only one queue for the four economy
class check-in counters and only one for the two business counters (in most
airports, however, there is a queue for each individual counter). When it is
their turn, passengers with luggage will be served, which may take them
between 5 and 20 minutes, while passengers without luggage will be served
in between 2 and 4 minutes. After leaving the check-in counter, passengers
take another walk of 10–20 minutes before they arrive at the gate, where a
security check is taken, which lasts between 1 and 2 minutes. After having
passed the gate, they leave our system.

The lines beginning withlet ServedCounter ... are used to count
how many passengers have been served by the different resources.

The simulation stops when all passengers generated by thegenerator

process have been served. Then theprint statement in themain module is
executed, yielding the following result:

Airport with different check-in counters
average queue waiting for information desk is .874 passengers
maximum queue waiting for information desk is 9 passengers
information desk was busy 62.48 per cent of the time, served 1000
passengers

92 Queuing models

The queues for the check-in counters were as follows:
type average maximum utilization passengers served
First .359 4 52.52 per cent 105
Business .331 6 50.77 per cent 294
Economy 5.058 19 92.87 per cent 601

average queue waiting for the gate is 10.978 passengers
maximum queue waiting for the gate is 26 passengers
gate was busy 97.39 per cent of the time, served 1000 passengers.

As defined in the code of thepassenger module, about 10 per cent of
all passengers (exactly 10.5 per cent in this run) are first-class passengers,
29.4 per cent fly business, and 60.1 per cent fly economy.

We see that the bottleneck of this system is the gate, with its average
queue length of about 11 passengers (for which there might not be enough
room). The queue length in front of the check-in counters seems tolerable,
even with an average of five and a maximum of 19 economy passengers
waiting to be served. First-class and business class passengers were served
at once in most cases, and their counters were idle about half the time. So
the only measure that would need be taken would be to increase the capacity
of the gate.

The airport model in a graphical environment

The following shows another version of the airport model, which was de-
signed with the help of the graphical user interface of SIMPROCESS, which
again includes most of the features of the airport example above. We use
it to introduce some features of ‘an object-oriented process modeling and
analysis tool that combines the simplicity of flowcharting with the power of
simulation and statistical analysis’ (this is SIMPROCESS’s self-description
on the first page of its built-in help system). SIMPROCESS, too, applies the
process-oriented simulation paradigm briefly discussed above.

Even readers with little or no programming experience will be able to
build a SIMPROCESS model like our airport model in little more than an
afternoon. No programming in a general-purpose or specialized program-
ming language is necessary, because (nearly) the whole modelling process is
performed by copying and pasting graphical symbols on the computer screen
(and giving these symbols names and some attributes when at a right mouse
click windows open to allow editing of processes, activities and entities), as
is true, for example, for STELLA too (see Chapter 3).

Examples 93

Figure 5.2 shows the top-level view of the airport model. Symbols are
‘activities’ in terms of SIMPROCESS, and rectangular boxes are (the default
icons for) ‘processes’ which consist of lower-level processes and, eventually,
of activities. The process boxes can be opened to allow a view into their
internal structure – see Figure 5.3 for an example of the internal structure of
the passport check process.

Figure 5.3: Internal structure of the information, the check-in and the pass-
port check processes of the airport model

information desk

check-in

economy check-in
passport

Figure 5.2 shows that the passengers of the carrier in question and those
of other airlines are generated by two separate ‘generators’ (or sources, as we
called them above, named ‘Entrance’ and ‘Others’ Entrance’). These sources
generate different types of passengers at different arrival rates which may
be constants or random variables (distributed according to any of about 27
distributions).

We are interested in the ‘other passengers’ only in so far as they have
to pass the same passport check as ‘our’ passengers, so we concentrate on
what happens to ‘our’ passengers – who come as first-class, business class
and economy class passengers. First they go to an information point (which
they can use or not, see Figure 5.3, top left), then they are directed to the

94 Queuing models

check-in area where they will queue up in front of the appropriate type of
check-in counter (which is equipped with ‘resources’ of type clerk in this
model). The server to which they move next is the passport check (equipped
with ‘resources’ of type officer) where they are mixed up with the ‘other’
passengers (from which they are separated immediately after the passport
check), then they proceed to the gate, from which they are transported by a
bus to their aircraft which serves as a sink in the terms introduced earlier.

Branch and merge activities (with appropriate symbols shown in Fig-
ure 5.3) serve to send passengers to their appropriate destinations. They
are defined in editor windows and attributed the necessary parameters, for
example to send passengers (bottom left) to the respective economy check-
in counters with equal probability, or (top right) to the class-specific check-
in counter areas according to the passengers’ tickets. The same applies to
the definitions of delay activities. Delays usually use resources to serve a
customer’s needs, and also represent the queues of customers waiting in front
of a server when the delay activity is not endowed with sufficient resources
to serve all customers. Two examples of editor windows for delays are shown
in Figure 5.4.

Figure 5.4: Editor window for specifying attributes to activities

Delay properties: general Delay properties: resources

In the left-hand window, the name and icon of the activity can be
chosen, and the duration can be defined. The pop-down list at ‘Duration’
allows a wide choice among various random distributions2 and units (from
nanoseconds to years) can be chosen. In the right-hand window in Figure 5.4,

2Constant, Erlang, Evl(), Exponential, Gamma, Hyperexponential and Inverse Gaussian
can be seen in the pop-down list; Evl() permits the insertion of an arbitrary expression that
will de evaluated whenever a customer enters this activity, the constant being the simplest

Examples 95

resources can be allocated to the activity. In this example, exactly one officer
per counter was chosen, but it would also have been possible to allocate two
or more resources of the same kind or different kinds and to define any or
all of them as required (with the radio buttons below the ‘Requirements’
text field). Editor windows for other purposes (for defining generate, branch,
merge and dispose activities, to name the most important activities) look
much the same.

SIMPROCESS, besides offering graphical output (time series of various,
user-definable counters and measures), collects most of the relevant informa-
tion in a so-called standard report, which, in contrast to SimLab/SIMSCRIPT
II.5 does not need to be defined by the modeller. Part of this standard report
is shown and commented on in the following:

SIMPROCESS Standard Report for Airport
Simulation Initiated at Thu Jun 03 12:34:02 2004
Simulation Concluded at Thu Jun 03 12:34:19 2004

The report first identifies the simulation run with a time stamp and then
continues with the numbers of generated entities of each type. This run
simulated 19 hours (from 4 a.m. to 11 p.m.) where ‘our’ airline served
approximately 1,800 passengers (and the airport as a whole saw 15,500
passengers), as is shown in the next portion (in which ‘Replication 1’ re-
minds us of the fact that SIMPROCESS allows experiments with a number
of simulation runs executed in parallel; in this case statistics of the parallel
runs are also calculated).

Entity : Total Count - Observation Based : Replication 1

Total Remaining Total
Entity Names Generated In System Processed
First 82 2 80
Business 224 2 222
Economy 1520 22 1498
Other Passengers 13716 6 13710

This segment also tells that a few passengers remained in the system
when the simulation run was stopped at 11 p.m. of simulated time. The next
portion gives an overview of how much time the different entities spent in
the system for different purposes:

expression, while the others are probability distributions whose density and distributions
can also be viewed after pressing the ‘...’ button next to the pop-down list.

96 Queuing models

Entity : Cycle Time (in Minutes) By State - Observation Based : Replication 1

Total In System----- Processing----- Wait For Resources Hold For Conditions
Entity Names Observed Average Maximum Average Maximum Average Maximum Average Maximum
First 80 25.257 46.871 5.714 21.321 2.935 14.508 16.608 39.358
Business 222 23.838 48.472 5.814 17.148 2.815 14.354 15.210 36.429
Economy 1498 25.211 57.917 6.922 27.150 2.900 19.351 15.388 39.529
Other Passengers 13710 0.502 0.667 0.499 0.500 0.003 0.167 0.000 0.000

Passengers spent up to an hour (slightly less than half an hour on average)
in the system (first and business class passengers considerably less), of which
– on average – only a few minutes were spent being serviced at counters, but
processing could last up to nearly half an hour; waiting in a queue (‘wait for
resources’) lasted 3 minutes on average and up to 20 minutes at most, while
most of the time was spent waiting in the gate for being transported to the
aircraft. The next portion shows the average work load of the two types of
resources: at peak times, all of them were busy, but on an average 8.3 per
cent of the clerks and 15 per cent of the passport check officers were idle.

Resource : Number of Units By State - TimeWeighted : Replication 1

--------Idle-------- --------Busy--------
Resource Names Capacity Average Maximum Average Maximum
Clerk 10.000 0.831 10.000 9.169 10.000
Officer 8.000 1.204 8.000 6.796 8.000

A more detailed part of the standard report lists all types of entities and
their time spent during the various processes and activities. Only a short
segment of this report is reproduced here (and the ‘hold for conditions’
columns are discarded because the only entry is in the last line, saying that
the mean waiting time for a bus was 15.42 minutes and at most 39.529
minutes):

Activity : Entity Cycle Time (in Minutes) By State at Selected Activity - Observation Based :

Replication 1

Total In Process Processing----- Wait For Resources

Activity Names Entity Names Average Maximum Average Maximum Average Maximum

Information First 5.057 18.961 3.149 16.321 1.909 7.400

Information Economy 5.201 21.150 3.021 21.150 2.179 11.585

Information Business 5.241 15.522 2.780 12.148 2.461 9.167

First Counter First 6.441 14.491 4.000 4.000 2.425 10.491

Business Counter Business 6.085 13.043 4.000 4.000 2.085 9.043

Economy Counter 3 Economy 7.260 16.771 5.000 5.000 2.260 11.771

Economy Counter 2 Economy 7.288 17.148 5.000 5.000 2.284 12.148

Economy Counter 1 Economy 7.161 16.428 5.000 5.000 2.153 11.428

Passport Check 0.504 0.667 0.000 0.000 0.000 0.000

Passport Check Counter 1 0.504 0.667 0.500 0.500 0.004 0.167

Passport Check Counter 2 0.503 0.667 0.500 0.500 0.003 0.167

Passport Check Counter 3 0.504 0.667 0.500 0.500 0.004 0.167

Passport Check Counter 4 0.504 0.667 0.500 0.500 0.004 0.167

Passport Check Counter 5 0.504 0.667 0.500 0.500 0.004 0.167

Passport Check Counter 6 0.504 0.667 0.500 0.500 0.004 0.167

Passport Check Counter 7 0.503 0.639 0.500 0.500 0.003 0.139

Passport Check Counter 8 0.504 0.667 0.500 0.500 0.004 0.167

Gate 0.500 0.500 0.500 0.500 0.000 0.000

Bus 15.118 39.529 0.000 0.000 0.000 0.000

Commentary 97

We see that this run does not show any serious bottlenecks, instead one
could think that the number of officers serving in the passport check could
be reduced, since they were idle 15 per cent of the time. So we might reduce
their number to seven and see what happens:

Resource : Number of Units By State - TimeWeighted : Replication 1

--------Idle-------- --------Busy--------

Resource Names Capacity Average Maximum Average Maximum

Clerk 10.000 0.831 10.000 9.169 10.000

Officer 7.000 0.204 7.000 6.796 7.000

As expected, the average number of idle officers is decreased by one.
And this is what happens to the passengers:

Activity : Entity Cycle Time (in Minutes) By State at Selected Activity - Observation

Based : Replication 1

Total In Process Processing----- Wait For Resources

Activity Names Entity Names Average Maximum Average Maximum Average Maximum

Passport Check Counter 1 0.552 0.849 0.500 0.500 0.052 0.349

Passport Check Counter 2 0.552 0.833 0.500 0.500 0.052 0.333

Passport Check Counter 3 0.554 0.833 0.500 0.500 0.054 0.333

Passport Check Counter 4 0.552 0.750 0.500 0.500 0.052 0.250

Passport Check Counter 5 0.553 0.833 0.500 0.500 0.053 0.333

Passport Check Counter 6 0.555 0.833 0.500 0.500 0.055 0.333

Passport Check Counter 7 0.552 0.833 0.500 0.500 0.052 0.333

Passport Check Counter 8 0.551 0.833 0.500 0.500 0.051 0.333

The constant processing time of half a minute is of course not changed,
the maximum time passengers had to wait in the queue is slightly increased
– from about 10 seconds to some 20 seconds, which seems still tolerable.

SIMPROCESS models are designed graphically, so no code has to be
written (at least not for models of a complexity comparable to our example),
so no code can be published. But SIMPROCESS models are stored in XML,
and they can be published both in XML and HTML. The code of the airport
example is available at the Web site of this book.

Commentary

The examples will have shown that the discrete event simulation approach
is appropriate for a class of problems which in the wider sense belong to the
social sciences (business and public administration, management science,
the analysis of workflow and business processes) where it is tempting to
model entities in the target system as customers, servers and queues. This

98 Queuing models

approach is used to detect bottlenecks and to redesign workflow and business
processes. The information necessary for modelling and simulation consists
of two parts: the structure of the target system (which resources a customer
will use, which ways a customer will take through the system, stepping from
resource to resource) and the empirical data for inter-arrival and serving
times. Bottlenecks can, of course, be detected in the target system itself, but
to develop strategies to avoid bottlenecks, simulation can be helpful because
the structure of the model can be changed until bottlenecks disappear or
become tolerable. When a satisfactory solution is found, the target system
can be re-engineered. In the case of our first example, we might try to open a
second security check post that would reduce the average queue length and
waiting time at the gate.

The discrete event methodology can also be used in other contexts. In
microanalytical simulation models (cf. Chapter 4), it may be used to avoid
recalculating states of microunits which are known to be constant for a long
time, such as the marital status of a person; so far, this has only been done
in the DYNAMOD model (see p. 65 and Antcliff 1993). In multi-agent
simulation it can be used for the same purpose (see, for example, Troitzsch
2004a).

What is beyond the methodology of discrete event models is adaptive
behaviour on the part of the customers. Although customers are called
‘dynamic objects’ in discrete event simulation, they do not change their
behaviour during the simulation. For example, they do not decide to leave
a queue when they have waited for too long a time, or to change to a shorter
queue (in our first example: to upgrade from economy to business to avoid
long waiting times in front of the economy check-in counter). In a target
system where each counter has a queue of its own, customers may even
change queues without upgrading – which cannot be modelled at all.

Further reading

There is a vast literature on discrete event simulation. For the beginner, we
recommend:

• Kreutzer, W. (1986)System Simulation. Programming Styles and Lan-
guages. Addison-Wesley, Sydney.

This describes discrete event simulation at an introductory level and with
a number of examples written in the widespread PASCAL language. Most
textbooks on simulation contain chapters on discrete event simulation,

Further reading 99

among them:

• Zeigler, B. P. (1985)Theory of Modelling and Simulation, pp. 125–
196. Krieger, Malabar. Second edition: Zeigler, B. P., Praehofer, H.,
and Kim, T. G. (2000)Theory of Modelling and Simulation. Second
Edition. Integrating Discrete Event Continuous Complex Dynamic
Systems, Academic Press, San Diego, CA;

• Kheir, N. A. (ed.) (1988)Systems Modeling and Computer Simulation,
pp. 97–135 and 567–596. Marcel Dekker, New York, NY. ;

• Pidd, M. (1984)Computer Simulation in Management Science, pp.
33–178. Wiley, Chichester;

• Bratley, P.et al. (1987) A Guide to Simulation, 2nd edn. Springer-
Verlag, New York, NY.

All of these include the fundamentals of queuing systems, and although
they were published a decade ago, they still provide the basic insights into
this type of modelling.

Although other simulation techniques beside discrete event simulation
have been used in many scientific disciplines, there are still lots of books on
discrete event simulation which are just titled ‘simulation’, such as

• Chung, C. A. (2003)Simulation Modeling Handbook: A Practical
Approach.CRC Press, Boca Raton, FL;

• Rubinstein, R.Y. and Melamed, B. (1998)Modern Simulation and
Modeling.Wiley Interscience, New York, NY;

• Banks, J. (ed.) (1998)Handbook of Simulation: Principles, Method-
ology, Advances, Applications, and Practice.Wiley, New York, NY

where the latter starts with the remark ‘The purpose of this handbook is
to provide a reference to important topics that pertain to discrete event
simulation’ (Banks 1998: 3), while the back cover describes the handbook
as ‘the only complete guide to all aspects and uses of simulation’.

Chapter 6

Multilevel simulation models

In the 1980s and early 1990s, the first simulation environment – MIMOSE –
was developed for simulating interacting populations. Figure 6.1 shows the
template for this kind of simulation model. The typical case is that there is a
population with its attributes (for example, its size, its birth and death rates
and its gender distribution), homogeneously consisting of a possibly great
number of individuals with their own attributes (such as sex, age, political
attitudes or annual income). Population attributes depend on aggregated
individual attributes, and these in turn depend on the population attributes.
For example, the gender distribution of the population depends on how many
individuals are male and how many female, and whether an individual is born
or dies depends on the population’s birth and death rates, which in turn may
depend on the population size and sex ratio (see p. 47).

For computational reasons, a cyclic dependence within the same time
step is forbidden, hence typically in each simulation step individual attributes
are evaluated as depending on the values that the population attributes had in
the previous simulation step, and population attributes are evaluated after all
individual attributes in the same simulation step. From the outset, MIMOSE
allowed an unrestricted number of object types (which may, but need not, be
seen as levels in the sense of Bunge 1979: 13).

Hence, MIMOSE is also capable of performing classical microsimula-
tion (see Chapter 4) where we often have a large number of persons, each
belonging to a household, all of them making up a (sample of a) population.
Earlier microanalytical simulation models did not include a complete feed-
back loop between persons or households and population in both directions.

Multilevel simulation models 101

Figure 6.1: Objects, attributes and their relations inmultilevel modelling
(including some direct interactions between objects of the same type)

aTypeOneObject
����

its1stAttr ��y�	9�
�)

its2ndAttr
its3rdAttr

. . .

itsNthAttr
. . .

itsLastAttr

? ? ? ? ?

6

aTypeTwoObject
���

�

its1stAttr ��y�	9�
�)

its2ndAttr
its3rdAttr

. . .

itsNthAttr
. . .

itsLastAttr

ect

���
�

tr ��y�	9�
�)

tr
tr

tr

ttr

ect

���
�

tr ��y�	9�
�)

tr
tr

tr

ttr

ect

���
�

tr ��y�	9�
�)

tr
tr

tr

ttr

ect

���
�

tr ��y�	9�
�)

tr
tr

tr

ttr� �O � �� �� �O O O� O

‘a - b’ means ‘b’s present depends ona’s past’, ‘a - b’ means
‘b’s present depends ona’s present’. Note that some objects of type
two depend on the past of some other objects of the same type.

In the terms of Figure 6.1, thick arrows (-) were used to aggregate data
to the population level, but these aggregate attributes were then not used
to control individual behaviour – there is no feedback from the reactions
of microentities on to the macro policies. Microentities respond to changed
tax laws, but within a microanalytical simulation model macro policies are
not changed because of this response, only by the experimenter. This is
why microanalytical simulation models were sometimes classified as static
(Henize 1984: 571) – which is a little misleading because microanalytical
simulation models are themselves classified as either static or dynamic (see
p. 60).

The multilevel modelling technique described so far allows only for an
indirect interaction between individuals. Each individual evaluates his or her
environment as a whole and reacts to it, changing the environment by his

102 Multilevel simulation models

or her behaviour. This is sufficient for models like the ones described in the
next few paragraphs. In these we assume large populations whose members
are influenced to change their attitudes by some factor such as the media
and that personal interaction leading to opinion change is of less impact.
Although it can be shown that models of this kind explain some interesting
phenomena, they cannot explain effects in social networks or small groups
where interactions are not only global, but also local, between individuals.
Local, or direct, interactions necessitate an extension of the ‘interacting
populations’ approach to include ‘direct interactions’, which is also possible
in MIMOSE (again see Figure 6.1).

Multilevel simulation proceeds in six steps, as most simulation does:

1. Identify some part of reality as a ‘real system’ consisting of elements
of different ‘natural kinds’ (Bunge 1977: 143); that is, define the target
for modelling (as we put it in Chapter 2), and represent its elements by
model objects.

2. Identify relations defined on the ‘natural kinds’ of these elements
(‘what depends on what?’).

3. Identify the properties of the elements and represent them by model
object attributes.

These three steps – steps 2 and 3 are easily interchangeable – are, by
the way, also covered by the static entity-relationship approach to database
modelling (Chen 1976) in computer science.

4. Detect – or rather reconstruct – the laws governing that part of reality
we are about to model (‘what are the dependences like?’, ‘system
representation’ (Kreutzer 1986: 2) – making assumptions in the terms
of Chapter 2).

5. Combine our notions of the laws governing reality into a model written
down in a formal language (a computer programming language), thus
representing real-world elements and their properties with (program-
ming language) objects and their attributes, and empirical laws with
program invariants.

6. Run the simulation program.

Some synergetics

The classical example of a formal model of interacting populations is con-
cerned with a single population of people whose decision on a certain issue

Some synergetics 103

may be either ‘yes’ or ‘no’ (Weidlich and Haag 1983); at the beginning,
the most probable majority is 50 per cent. Depending on how strongly
individuals’ opinions are coupled (κ) to the prevailing majority, after a while
the proportion of ‘yes’ decisions may be bimodally distributed, with most
probable ‘yes’ percentages being either about 10 or 90 per cent. Figure 6.2
shows two results (for low and highκ, respectively) of a numerical evalu-
ation of the model yielding the time-dependent probability distribution of
finding the population with a certain ‘yes’ percentage.

Figure 6.2: Opinion formation in a homogeneous population (left:κ = 0.5,
right: κ = 1.5; horizontal axis, ‘yes’ percentage; diagonal axis, time; vertical
axis, probability of finding a population with a certain percentage at a certain
time)

0% yes 50% yes 100% yes

t

x

f(x)

x100% yes50% yes0% yes

f(x) t

This model was one of the first published under the heading of syn-
ergetics (Weidlich 1972), ‘an interdisciplinary field of research, [which] is
concerned with the cooperation of individual parts of a system that produces
macroscopic spatial, temporal or functional structures’, as Haken (1978:
ii), who coined the term, put it.1 In Weidlich’s example, the ‘individual
parts’ are the members of the population (the ‘system’), ‘cooperation’ is
achieved through the coupling between individual opinion formation and the
prevailing majority, and in the end, a ‘macroscopic structure’ may arise in so
far as a very strong majority may develop out of a small initial majority.
Another example of a phenomenon that can be described by synergetics
is the phenomenon of clapping in time or the synchronous clapping of an
enthusiastic audience which suddenly starts from ‘white noise’ applause
when a certain level of intensity is reached (but to describe this phenomenon,
synergetic techniques other than those described in this section must be used
– see Babloyantz 1980; an der Heiden 1992).

1Meanwhile, synergetics is more or less embraced by the sociophysics movement.

104 Multilevel simulation models

We can describe the opinion formation model mathematically as a
stochastic process – which means that at least some of the state changes
in the model come about only with a certain probability. Thus, the core of
this mathematical model is made up of the individual transition probabilities
from ‘yes’ to ‘no’ and vice versa. These probabilities may be written down
as follows:

µyes←no = ν exp(π + κx)

µno←yes = ν exp [−(π + κx)] (6.1)

x =
nyes − nno

nyes + nno

(6.2)

The parameters in the individual transition probabilities have the follow-
ing meaning (‘exp’ is the exponential function, which in the context of this
model has the advantages of never being negative and of easy mathematical
treatment):

ν is a general ‘flexibility’ parameter; the higher it is, the higher will be
both transition probabilities, and the more often will opinion change
happen, regardless of the direction of the change.

π is a preference parameter; the higher it is, the higher will be the
probability of changing to ‘yes’, and the lower will be the probability
of changing to ‘no’;π = 0 means neither ‘yes’ nor ‘no’ is preferred in
the absence of coupling, andπ < 0 means a bias in favour of ‘no’.

x is a scaled variable that describes the majority in a population:x = −1
means ‘all no’,x = 0 means ‘split half’, andx = 1 means ‘all yes’.
Some mathematical derivations are easier with this scaled variable
than with the numbers of ‘yes’ (nyes) and ‘no’ (nno).

κ is a coupling parameter; if it is high, then the influence of a ‘yes’
majority on an individual change to ‘yes’ is high (and the same is true
for the influence of a ‘no’ majority on an individual change to ‘no’;
with low κ this influence is also low). Ifκ = 0, then neither individual
transition probability depends on the opinion distribution.

N is half the total number of individuals in the population (which might
seem a little strange but brings some convenience in deriving the
mathematical results).

If n is defined as:
n =

nyes − nno

2
(6.3)

then we obtain equation (6.2), which we can also write as

x =
2nyes

2N
− 1 (6.4)

Some synergetics 105

Note that:

−N ≤ n ≤ N

−1 ≤ x ≤ 1

nyes − nno = 2n

nyes + nno = 2N

from which a ‘master equation’ – a system of differential equations for the
time-dependent distribution of populations – may be derived.

Let p(n; t) be the probability that the population attains staten at timet.
Then, for all timest,

N∑
n=−N

p(n; t) = 1

Now we analyze the changes inp(n; t) during a time span∆t which is
designed to be so short that at most one individual has an opportunity to
change its opinion; that is to say, the population can only attain a neighbour-
ing state (fromn to n + 1 or to n − 1) or stay in its former staten. Then
we can calculate the probability that the population is still in staten at time
t + ∆t. We first define the transition probability rates for the population:

w[(n + 1)← n] = w↑(n) = n−µyes←no = (N − n)µyes←no

w[(n− 1)← n] = w↓(n) = n+µno←yes = (N + n)µno←yes

w[j ← i] = 0 for |i− j| > 1

Multiplication by ∆t yields the probability that the population will
undergo the transition within a time span of this length. The probability that
nothing happens within∆t is

w[n← n]∆t = w0(n) = 1− w↑(n)∆t− w↓(n)∆t

Then the probability that the population is still in staten at timet+∆t is
given by the sum of the probabilities of being in one of the neighbouring
statesn + 1 and n − 1 at time t, multiplied by the respective transition
probabilitiesw↑(n − 1) andw↓(n + 1), and of the probability of being in
the actual staten multiplied by the probabilityw0(n) of staying there:

p(n; t + ∆t) = p(n + 1; t)w↓(n + 1)∆t

+p(n; t)w0(n)∆t

+p(n− 1; t)w↑(n− 1)∆t

106 Multilevel simulation models

Further simplifications lead to

p(n; t + ∆t)− p(n; t)

∆t
= p(n + 1; t)w↓(n + 1)

−p(n; t)(w↑(n) + w↓(n))

+p(n− 1; t)w↑(n− 1)

which, by taking the limit∆t → 0 and further simplification, yields the
system of linear differential equations2 consisting of2N + 1 functions
p(n; t):

ṗ(t) = Lp(t)

wherep(t) is a vector of the probabilitiesp(n; t) for all the possible pop-
ulation states, andL is a matrix which has non-vanishing elements only in
the main diagonal and in the two adjacent diagonals, and all its elements are
constant:

lii = −w↓(i)− w↑(i)
lij = w↓(j) j = i + 1
lij = w↑(j) j = i− 1
lij = 0 |i− j| > 1

This, by the way, leads to
∑

i ṗ(i; t) = 0 for all t, which also fulfils the
condition

∑
i p(i; t) = 1.

This is linear and could be solved by analytic means, although it is
solved numerically here because for a population size of2N we have
2N + 1 coupled differential equations. By analytic means, however, the
stable equilibrium distribution of populations fort → ∞ may be calculated
approximately, where the approximation is fairly good for population sizes
above 50.

κ is the most important parameter of this model, since it represents the
strength of the coupling of the individuals to the majority.κ determines
whether a population is likely to have a fifty-fifty distribution of ‘yes’ and
‘no’ (κ < 1 for π = 0) or is likely to have a strong majority of either ‘yes’
and ‘no’ (κ > 1 for π = 0). With π 6= 0 and smallκ, the most probable
majority in a population would be different from 50 per cent (and with high
κ the probability maxima in the right-hand part of Figure 6.2 would be of
different height).ν is a frequency parameter but it is of little interest: it
affects only the time scale of the structure-building process, because with
higherν the breakthrough of either ‘yes’ or ‘no’ comes faster. Forπ = 0 and

2A numerical solution of this system of differential equations is a simulation of the
macro object ‘population’ with the vector-valued attribute ‘probability of being in one of
the possible states’.

Software: MIMOSE 107

κ > 1 the distribution of populations develops into a bimodal distribution –
the probability of finding the population with a strong majority of either ‘yes’
or ‘no’ is very high. Forκ < 1 the probability of an evenly split population
is very high (see Figure 6.2 – forπ 6= 0 the threshold forκ is different).

Models of this kind may be extended to the case of several interacting
populations and to cases where members of the populations can decide
between more than two alternatives (Weidlich 1991). Simulation is necessary
for these kinds of models for two reasons. First, it is required to generate
graphical representations of the time-dependent probability distribution –
this is only a numerical treatment of the master equation, that is, of a
system of ordinary differential equations. The second purpose of simulation
becomes clear for extensions of the model. An analytical treatment of the
master equation and the approximation of its stable solution is only possible
for individual transition probabilities of the form of equation 6.1. Other, and
perhaps theoretically more interesting, individual transition probabilities (or
‘assimilation functions’ as analyzed by Lumsden and Wilson 1981: 135)
cannot be treated analytically. For these, only single realizations of the
stochastic process may be found with the help of simulation (for an example
with a varying number of interacting populations and individual transition
probabilities which is much more intricate than the one discussed here; see
Troitzsch 1994).

Software: MIMOSE

The MIMOSE simulation software package derives its name from ‘micro
and multilevel modelling and simulation environment’. It was originally
planned as a model specification language in the early 1980s, but during the
decade of its development, it grew into a more-or-less complete simulation
tool with a graphical user interface both for model input and for representing
results.

Model description in MIMOSE

Models must still be described in a textual manner, using the functional
language described below. Experiments have been carried out to support
users with graphical tools for model specification (Klee and Troitzsch
1993), but they are not part of the MIMOSE version currently distributed
(for SunSparc, LINUX/X-Windows and (meanwhile obsolete) NeXTStep

108 Multilevel simulation models

systems; a Java interface for use on the Internet is executable under WIN-
DOWS (but still needs a UNIX or LINUX based server, consulthttp://
www.uni-koblenz.de/∼sozinf/projekte/mimose). Model description
is done by specifying one or more object classes representing ‘natural kinds’
of things within the target system:

object1 := { ... }
object2 := { ... }

and then defining these object classes by specifying one or more attributes
representing the properties of the things represented by MIMOSE objects:

object1 := {
attr1 : <type> := <state change function>;
...
constattr2 : <type>;
...

}

where<type> may be one of the basic typesint (integer numbers, which
may also be used for nominally scaled attributes like ‘yes’ and ‘no’) orreal

(non-integer numbers for metrical attributes) or alist type such aslist
of int or list of <user-defined object type>.

Initialization is done in a later step.
Constant attributes may also be specified. State change functions are

expressions that must not be constant and may contain function applications
of the form<function name>(<arguments>) as well as the common arith-
metic operators(+− ∗/). They may refer to the current or former values of
attributes,attr andattr_n, respectively.

Functions may be user-defined (outside object type definitions). They
are useful in more complex models than those introduced in this chapter,
because if the same function is used in more than one place it need only be
written once – which enhances understandability and the maintenance of the
model.

A MIMOSE model description may be entered via a text editor or within
MIMOSE’s model description window. Figure 6.3 shows this window in the
WINDOWS client environment. Even if the description is read from file,
the model description window is opened and the description file is loaded.
This is why it is possible to correct typing or modelling errors that may have
been found during the model check or during runtime – it is not necessary to
return to one’s editor to correct the file and restart the simulator.

Software: MIMOSE 109

Figure 6.3: MIMOSE’s model description window

Model initialization

Although MIMOSE models may be initialized textually, using a text editor,
the MIMOSE system allows for initialization from a graphical user inter-
face. Once the model description has been checked, MIMOSE (or rather
its graphical user interface) opens an initialization window in which all
necessary initializations must be entered. Figure 6.4 shows this window in
the WINDOWS client environment.

This window is only opened after the model description has successfully
been checked (in fact, it can, of course, only be displayed after the simulation
system knows about all objects, attributes and parameters). The initialization
window remains open during the model’s runtime. On interruption, values
may be altered, for instance to analyze the effect of a sudden change in a
parameter.

Objects and attributes are initialized on the objects register card, and the

110 Multilevel simulation models

Figure 6.4: MIMOSE’s initialization windows

parameters register card allows parameter values to be entered.
Some new syntactical elements and built-in functions of the MIMOSE

model description language show up in the initialization window:numbers of
instanceshave to be inserted in the lines marked with the object type names
alone, andattribute initializationshave to be inserted in the lines marked
with type names and attribute names, separated by ‘.’

In the example shown in Figure 6.4,makeref(list1, list2) is a
function that generates references from all objects of listlist1 to all
objects of listlist2 – in order that current values of attributes of the
objects of typelist2 can be accessed by objects of typelist1 – and
makeinst(<number>, <function>) is a function that initializes a certain
attribute for<number> instances to the values returned by<function>. In
our example, theatt attribute of all 100 instances of object typeperson is
initialized to the next 100 values generated by the random number generator
uniform (in fact, it is the first instance of the random number generator
– the first ‘1’ in the argument list – and since the next two arguments are
integers, random numbers are taken from the set of the integer numbers 0
and 1 meaning ‘no’ and ‘yes’).[...] is a list constructor for attributes of
typelist of ... and<<...>> is a constructor for object lists.

Thus, in thepop.outx 1 textfield, <<[]>> means: initialize the ‘old
value’ of attributeoutx in the only instance of object classpop to the empty

Software: MIMOSE 111

list [] (if there were two instances of classpop, the entry would be<<[],
[]>>). Note here that the ‘<<...>>’ operator applies to lists of objects,
whereas the ‘[...]’ operator applies to list type attributes. Even though
there is only one instance ofpop, its internal representation is a one-element
list.

In the same manner,person.att 1 is initialized to 100 values returned
by the functionuniform with its seed no. 1 and on the interval[0, 1]. And
thelist of pop type attributep of each of the 100 instances of object class
person is initialized to the one-element list of references to the only instance
of classpop.

Simulation initialization

MIMOSE separates the initialization and parametrization of the model from
the initialization of a specific simulation run where the length of a time step
(DT), break and stop conditions as well as random number generator seeds
can be specified. Figure 6.5 shows this window in the NextStep/OpenStep
environment. This window looks much the same in all MIMOSE imple-
mentations. The break condition in this example is fulfilled whenever the
expression(count % 100) = 0 (the modulus ofcount with respect to
100) returnstrue, count being a built-in parameter that is incremented at
each simulation step. The X-Windows and Java implementations also allow
initialization of the random number generator with user-specified seeds.

Result presentation

The MIMOSE graphical user interface allows for a graphical representation
of the results of simulation runs. Figure 6.6 shows the window from which
graphs may be designed. With the two boxes on the left-hand side of the
window, the x- and y-axes of the graph can be defined. The x-axis has
to be identified with one attribute or parameter (e.g.$time or $count),
whereas the y-axis can be identified with several attributes. In both boxes,
first ‘parameters’ or an object have to be selected from the drop-down menu,
and then particular parameters or attributes of the chosen object may be
selected. Graphs are scaled (and in some interfaces may be rescaled at the
user’s discretion).

Graphs are automatically labelled (text fields at bottom left) and can be
saved to disk or sent to the printer via the file menu. Figure 6.6 shows the

112 Multilevel simulation models

Figure 6.5: MIMOSE’s simulation run initialization window

window in the Windows environment. In other implementations it looks a
little different and has several subwindows for selecting objects, attributes,
scales, line styles and colours.

Beside two-dimensional plots of single or multiple attributes against time
(or step count, as in Figure 6.6), two- or three-dimensional plots of two or
three attributes may be requested from the result presentation design window
where this seems applicable. The attributes used for plotting must be of type
list of real or list of int and these lists must be of the same length –
which, of course, holds in our example where$count is the list of all values
count ever had and wherepop.outx is the list of all valuespop.x ever
had. Since at each simulation stepcount is incremented (starting, of course,

Examples 113

Figure 6.6: MIMOSE’s result presentation design window for 2D-graphics

from 0) and sincepop.x is appended topop.outx (which was empty in the
beginning), both lists must always have the same length. We will discuss this
below with the help of the first example.

Examples

Opinion formation

The following example simulates the opinion formation model already used
for the purpose of introducing basic synergetics (see page 102). It comprises
two types of objects, namely the object representing the population as a
whole (pop), and an object type for the persons this population consists of.

pop :=
{

114 Multilevel simulation models

x : real
:= 2 * haselements (persons.att,1)

/ length (persons)
- 1;

persons : list of person;
outx : list of real := append (outx 1,x)
};

At every time step, the number of persons holding attitude 1 (‘yes’) is
counted, and thex-value for the population is calculated (recall thatN is
half the number of people in the population):

x =
2nyes

2N
− 1

This value is then appended to the output list. This list has to be initialized
as empty (see Figure 6.4), because only in this case will it have the same
length as the (automatically generated) lists$time and$count, the latter
being used in Figure 6.6.

person :=
{
att : int

:= case att 1 of
1 :0 if

uniform(1,0.0,1.0) <
nu * exp(-(pi + kappa * elem(p.x 1,1)))

else 1;
default:1 if

uniform(1,0.0,1.0) <
nu * exp(pi + kappa * elem(p.x 1,1))

else 0;
end;

p : list of pop
};

A person holding attitude 1 (‘yes’) changes to attitude 0 (‘no’) with prob-
ability ν exp [−(π + κx)], and a person with any other attitude (default,
the only alternative is, of course, 0 or ‘no’) changes to 1 or ‘yes’ with
probabilityν exp [π + κx], wherex is the first element (elem(.,1)) of the
list of p’s old values (_1) of the attributex: p is the local name of the
one-element list of objects of typepop. The probable event is described
explicitly here: a uniformly distributed random number in the interval[0, 1]

Examples 115

(uniform’s second and third arguments) is drawn from the first random
number stream –uniform’s first argument. If this number is less than the
respective probability, the attitude change happens. (MIMOSE also supplies
a Boolean-valued function namedprob with the desired probability as an
argument.)

After the mathematical treatment of this model (see p. 102) the behaviour
of the simulation model does not come as a surprise. Figure 6.7 shows time
paths for 20 independent and (nearly) identical experiments for populations
consisting of 100 persons each. This example shows that MIMOSE en-
ables one to design multiple experiments: 2000 individuals were distributed
among 20 populations with equal parameters and initialized randomly to the
‘yes’ and ‘no’ attitudes. All the populations started near (but not at)x0 = 0
– which is why the 20 experiments are not fully identical.

There are only a few lines of MIMOSE code, which must be added to
the model description to allow for multiple experiments:

experiment :=
{
pops : list of pop;
mean : real := pluslist(pops.x)/length(pops.x);
outmean : list of real := append(outmean 1, mean);
}

Due to an idiosyncrasy of the MIMOSE system, we have to introduce at
least one variable attribute in the definition ofexperiment, otherwise the
object would never be evaluated.mean is an attribute that contains the mean
of all x-values, but this is not used (nor very useful) in this context, because
the mean value of the population distribution is a local minimum forκ > 1,
as we saw earlier.outmean collects these means for all time steps.

Figure 6.7 shows that ten of the model populations develop into a large
‘yes’ majority (x > 0.7), while another eight display a similarly large ‘no’
majority (x < −0.7). Which majority evolves is obviously decided during
the very first steps of the simulation runs, at least in most cases. Only two
populations seem undecided (x = −0.26 andx = 0.50) after 200 simulation
steps.

This example shows that a single run of a computer simulation does
not yield more than one (or, within reasonable computing time, at most a
few) realizations of a nonlinear stochastic process, and – in contrast to the
case of linear models – we may never be sure that these realizations are
near a maximum likelihood path. A single simulation of the development

116 Multilevel simulation models

Figure 6.7: Time series from 20 simulation runs withπ = 0 andκ = 1.5,
2N = 100, and all populations starting with approximatelynyes = nno

of one population of the type of this example might lead to the erroneous
conclusion that our model always generates high ‘yes’ majorities. In more
complex models, which would consume much more computing time, we
might be tempted to run only one simulation (or, at most, very few) – and
we would remain misled since no mathematical approximation would teach
us better. Thus, to avoid erroneous conclusions, a large number of runs is
always necessary to judge the behaviour of a stochastic model.

Models of this kind can easily be extended to the case of several interact-
ing populations (see the next example) and to cases where members of the
populations can decide among more than two alternatives.

Empirical applications have been suggested by several authors – see
Haken (1996) and the discussion in the same issue ofEthik und Sozialwis-
senschaften; see also Helbing (1994a) – the most instructive perhaps being
a model where the ‘opinion’ is which of two (or more) substitutable goods
(such as competing computer operating systems, or competing video-tape
systems, or competing cigarette brands) is preferred by consumers. A strong
majority for one system or brand and the extinction of the competitor may be
expected when cohesion is high (κ > 1) – for example, where compatibility
is needed or is advantageous for using the good (as is the case for computers
and their operating systems and for video-tape recorders). In contrast, an
equal share may be expected when cohesion is low (κ < 1) – for example,
where compatibility is unnecessary (as in the case of brands of cigarettes).

Examples 117

Gender segregation

Our second example has a sound empirical background. It is a formal recon-
struction of the process by which gender segregation in GermanGymnasien
(high schools) was overcome after the Second World War. In 1950, there
were 59 single-sex and 56 coeducationalGymnasienin the federal state of
Rhineland-Palatinate; in 1990 these numbers had changed to 10 single-sex
and 130 coeducationalGymnasien. Although even in 1950 not only same-
sex teachers were assigned to single-sex schools, same-sex teachers were
in a large majority in single-sex schools. The process we consider here is
the process of assigning male and female teachers to both single-sex and
coeducational schools – for a more detailed description of the development
of gender proportions among teachers and pupils see Wirrer (1997). As the
process of changing a single-sex into a coeducational school often lasted
many years, it seems justified to model the process as a whole – for a more
detailed model see Kraulet al. (1995).

The two graphs in Figure 6.8 show the distribution of percentages
of women among teachers at some 150 secondary schools in Rhineland-
Palatinate from 1950 to 1990. The left-hand graph represents the empirical
data, and the right-hand graph is the output of a simulation based on a few
simple assumptions:

• All teachers leaving their jobs are replaced by men and women with
equal overall probability. This could be considered to be positive
discrimination, but for most of the period considered, the proportion
and qualifications of women among newly graduated teachers were
high enough to make positive discrimination unnecessary.
• Men stay in their jobs twice as long as women.
• New women are assigned to an individual school with probability

P (W |ξ) = ν(t) exp(κξ) according to the proportionξ of women
among its teachers – which for highκ would mean that there is a
high preference for women to be sent to girls’ schools with a high
percentage of women teachers while forκ = 0 there would be no such
preference.

κ is 0.5 in this simulation run, andν(t) is such that at all times men and
women have the same overall probability of replacing retired teachers. The
simulation is initialized with a gender distribution close to the empirical
distribution in 1950. Withκ > 1, gender segregation would continue and
become even stronger as in the right-hand plot in Figure 6.2.

Below is the MIMOSE code for this model. To enhance readability, the

118 Multilevel simulation models

Figure 6.8: Distribution of percentages of women among teachers at 150
secondary schools in Rhineland-Palatinate from 1950 to 1990: left, empirical
data; right, three-level simulation (teachers–schools–state)

100.080.0 60.0 40.0 20.0 0.0
0.0

0.1

0.0

0.1

1950

1960

1970

1980

1990

empirical data

100.080.0 60.0 40.0 20.0 0.0
0.0

0.1

0.0

0.1

1950

1960

1970

1980

1990

simulation results

variability of nu (ν) is not considered in this program until later (see p. 122).
The only attribute of interest for output isschool.sexRatioList, which
collects each school’s gender ratio for consecutive time steps (years).

system :=
{
schooltypes : list of schooltype;

};

schooltype :=
{
schools : list of school;

};

school :=
{
lteacher : list of teacher

:= updateref(lteacher 1,
friend(teacher.position));

sexRatio : real /* sex=0: male, sex=1: female! */
:= haselements(lteacher.sex,1) / length(lteacher);

sexRatioList : list of real
:= append(sexRatioList 1, sexRatio);

prob1 : real
:= nu * exp(kappa * sexRatio 1);

};

Examples 119

teacher :=
{
position : list of school;
sex : int;
age : int

:= age 1 + 1;
duration : int

:= (normal(1,15,5) if sex else normal(1,30,5))
if count = 1 else
duration 1 - 1;

cond : int
:= 1 if (duration 1 = 1) || (age 1 >= 64) else 0;

death : list of teacher
:= delete(self(teacher),

self(teacher) if cond 2 else []);
new : list of teacher

:= copy(self(teacher),
cond 1,
[age 1 :: uniform(1,25,30),
cond 1 :: 0,
cond 2 :: 0,
sex :: 1 if

prob(1,position.prob1 1)
else 0,

duration 1 :: normal(2,15,5)
if sex else
normal(2,30,5)

]);
};

This MIMOSE program introduces five new built-in functions:copy,
delete, self, friend andupdateref. They are needed here because we
have dynamical populations (school staffs) from (into) which individual
elements (teachers) may be removed (inserted).

• friend returns a reference list, which is a list of all (in this case)
teacher instances whoseposition attributes refer to the calling
instance; thus in our case it is a list of all teachers currently employed
at this school.
• updateref updates the current reference list with a new reference list

– which is necessary when new instances have been inserted or old
ones have been removed.
• copy anddelete do just what their names say:delete removes all

instances listed in its second argument (which is non-empty only if – in
this case –cond 2 is true) from its first argument, andcopy generates

120 Multilevel simulation models

a new instance if its second argument is true, using its first argument
as a template and its third argument as an initialization of the attributes
of the new instance (this third argument may be an empty list, if the
new instance is to be a true copy of the template, or an incomplete list
may be given if some attributes are to be taken from the template and
others are to be initialized anew). New teachers’ ages are initialized to
a uniformly distributed number from 25 to 30; they are not dismissed
for two periods (their dismissal conditions (cond_1 andcond_2) are
set to 0 for the two previous periods); and their job duration is set to a
normal variable with mean 15 periods (years) for women (30 years for
men) and standard deviation 5. This is not done in the simulation run
initialization, but in the first simulation step (if count = 1) or at the
time of job entry (last entry in the third argument ofcopy), so changes
to the duration mean and standard deviation can be made within the
same piece of code (the expression could also have been ‘hidden’ in a
user-defined function).
• self returns a one-element list which contains a reference from an

instance to itself.

Initialization in this example is a little more intricate than in our first
example and is shown below.

%system := 1;
system.schooltypes := makeref(system,schooltype);

%schooltype := 3;
schooltype.schools :=
makegroupref(schooltype,[1,1,1],school,[45,45,60]);

%school := 150;
school.lteacher 1 := makegroupref(school,makelist(150,1),

teacher,makelist(150,30));
school.sexRatioList 1 := makeinst(150,[]);
school.sexRatio 1 := makeinst(150,uniform(3,0.0,1.0));
school.prob1 1 := makeinst(150,uniform(3,0.0,1.0));

%teacher := 4500;
teacher.sex := makegroupinst(makeinst(1350,1 if prob(6,0.88) else 0),

makeinst(1350,1 if prob(7,0.22) else 0),
makeinst(1800,1 if prob(8,0.08) else

0));
teacher.age 1 := makeinst(4500,uniform(2,25,65));
teacher.duration 1 := makeinst(4500,0);
teacher.cond 1 := makeinst(4500,0);
teacher.cond 2 := makeinst(4500,0);

Examples 121

teacher.position := makegroupref(teacher,makelist(150,30),
school,makelist(150,1));

nu := 0.1;
kappa := 0.5;

This model runs with 4500 teachers in 150 schools of three school types.
The numbers of instances of each type are initialized in the lines beginning
with the% sign.

• Theschooltype.schools expression assigns the first 45 schools to
school type 1, the next 45 to type 2 and the last 60 to type 3.
• In the same manner, theschool.lteacher 1 expression assigns 30

teachers to each school (this is because themakelist function returns
a list of 150 1s and 30s respectively).
• The teacher.sex line initializes the first 1350 teachers (in school

type 1: girls’ schools) to be female (1) with probability 0.88, the next
1350 teachers (in school type 2: mixed) to be female with probability
0.22, and the last 1800 teachers (in school type 3: boys’ schools)
to be female with probability 0.08. These numbers approximate the
empirical state for the year 1950 in theGymnasienin Rhineland-
Palatinate – not quite exact, but individual data for teachers nearly
50 years ago are lost or hard to come by.
• The teacher.age 1 expression initializes the teachers’ ages to a

uniform random integer number between 25 and 65.
• The teacher.position expression assigns each teacher his or her

school (the first 30 teachers are assigned to school 1, the next 30
belong to school 2, and so on).

The result of a simulation run is shown in Figure 6.9 on page 122.
Figure 6.8 gives probability and frequency density functions for the model,
but Figure 6.9 gives only a few time series for some individual schools –
which, nevertheless, give the same impression of the modelled process as
a whole. For this figure, the MIMOSE code was extended by a few lines,
which model the administration’s behaviour in the following manner:

• In every year, make all schools count how many teachers will retire
(cond = 1), and make them calculate how many women would replace
them if nu were 1 (sinceprob1 containsnu as a multiplier, in the
end we divide by last year’snu). Thus, we insert in theschool object
description:

sys : list of system;
toReplace : integer

122 Multilevel simulation models

:= haselements(lteacher.cond,1);
wToRepl : real := toReplace*prob1/sys.nu 1;

Now wToRepl contains the number of women to employ fornu=1 for
all schools.
• Add (pluslist) all the schools’ reports.SR now contains the number

of all teachers to be employed in all the schools of the state, whileSRp
contains the number of all women teachers who had to be employed if
nu was equal to 1. Thus fornu=1 SRp women will be amongSR new
teachers all over the state. SinceSRp should be one half ofSR, nu has
to be rescaled by the factorSR/(2.0*SRp). Adjust nu accordingly.
Thus, we insert in theschool object description:

schools : list of school;
SR : real := pluslist(schools.toReplace);
SRp : real := pluslist(schools.wToRepl);
nu : real := SR/(2.0*SRp);

Figure 6.9: MIMOSE results of the gender proportion in some of the 150
simulated schools (with variablenu)

$count

school.sexlist

 1.0 50.0 17.33 33.67
 0.00

 0.94

 0.31

 0.63

The difference between the empirical and the model graphs seems visu-
ally small and could be lowered further by means of an even finer tuning of
the few parameters needed in the simulation model. The model satisfactorily

Examples 123

explains the historical process of gender desegregation and even justifies the
retrodiction that the main change in the process occurred after about 20 years
of a more-or-less continuous development towards a unimodal distribution.
After 1970, the overall percentage of women teachers seems to rise but then
falls again in the last decade, as in the empirical data. And all this with the
three simple assumptions enumerated at the beginning of this subsection.

But still there is a caveat: perhaps there are several different and equally
simple models delivering graphs that for the first 40 years resemble the
empirical graph to the same or even higher degrees, but which develop dif-
ferently in the future. Although prediction and explanation are close relatives
and methodologically very similar (Grünbaum 1962; Scriven 1969), we may
have the case that ‘satisfactory explanation of the past is possible even when
prediction of the future is impossible’ (Scriven 1969: 117 – see also the
discussion in the conclusion of Chapter 2 and Troitzsch 2004b).

Simulation in this example was used to reconstruct an empirical process
with the help of a simple model, and it could now be used for fine-tuning
the model parameters. Estimation of the parameters, however, from the
empirical data at hand, requires intricate mathematics. Thus, simulation may
give at least a hint about which model might be adequate for parameter
estimation. Moreover, it leads to one conclusion that might be politically
important: positive discrimination takes its time.

The dove–hawk–law-abider model revisited

The dove–hawk–law-abider model discussed in Chapter 3 lends itself to a
multilevel simulation: instead of modelling three subpopulations growing
and shrinking, we could model one population consisting of a number of
individuals who change their minds about the strategies they apply.

A MIMOSE model equivalent to the DYNAMO model reported in Chap-
ter 3 has the following form:

hobbes :=
{
hawk : real := hawk 1 + DT * (yieldh 1 - hawk 1 * yields 1);
dove : real := dove 1 + DT * (yieldd 1 - dove 1 * yields 1);
lawa : real := lawa 1 + DT * (yieldl 1 - lawa 1 * yields 1);

yieldd : real
:= (dove * rdd + hawk * rdh + lawa * rdl) * dove;

yieldh : real

124 Multilevel simulation models

:= (dove * rhd + hawk * rhh + lawa * rhl) * hawk;
yieldl : real

:= (dove * rld + hawk * rlh + lawa * rll) * lawa;
yields : real

:= yieldd + yieldh + yieldl;

lHawk: list of real := append(lHawk 1,hawk);
lDove: list of real := append(lDove 1,dove);
lLawA: list of real := append(lLawA 1,lawa);
};

The MIMOSE model necessary for a multilevel version is quite straight-
forward. The individuals are identified by the strategystrategy which
they are applying. They change their strategies (0 = hawk, 1 = dove, 2 =
law-abider) with population-wide probabilities that depend on the current
expected revenues (yieldh etc.). This is why these probabilities need only
be calculated at the population level. Population-wide strategy transition
probabilities might seem implausible, but note that this model reflects only
the traits of the macro model of Chapter 3, where population-wide strategy
transition rates were also assumed.

While in the macro model subpopulations grow and shrink according to
the differences between their revenue and the average revenue, we have to
make one additional assumption here. The probability of a hawk applying
another strategy should depend on the difference between the expected
revenue resulting from the new strategy and the hawk’s revenue; and the
same should apply to doves and law-abiders.

The expected revenues of the particular strategies are calculated in ex-
actly the same way as in the macro (DYNAMO) model (they are only
multiplied by a small constantkappa to avoid numerical problems with the
exponential function). As in the two examples above, the transition probabil-
ities are calculated as an exponential function of the difference between the
two expected revenues, multiplied by a small constantnu to make sure that
probabilities never exceed 1. As in the two examples above, the constantnu

can be interpreted as an overall tendency of the individuals to change their
strategies, whilekappa has to be interpreted as the individuals’ dependence
on the revenue difference (forkappa = 0, all strategy changes would have
the same probability, namelynu).

Some technical remarks might be in order here.

• The random number according to which an individual makes its choice
(r, a uniform random number between 0.0 and 1.0) is calculated for

Examples 125

each individual at every time step.3 The choice is made according
to Figure 6.10: ifr falls between 0.0 andp.pHawkToDove, then
the dove strategy is chosen; if it falls betweenp.pHawkToDove and
p.pHawkToDove + p.pHawkToLawA, then the law-abider strategy is
chosen; and ifr is greater thanp.pHawkToDove + p.pHawkToLawA,
then a hawk remains a hawk.
• The number of individuals applying a particular strategy is no longer

calculated by a difference or differential equation – they are only
counted at each simulation step (by the functionhaselements).
• A history is kept for each subpopulation size (lHawk, lDove and
lLawA).

Figure 6.10: Random selection of a hawk’s new strategy

Dove Law-Abider stay

0.0
p.pHawkToDove

p.pHawkToDove + p.pHawkToLawA 1.0

Thus, for a multilevel version we have to insert the individual transi-
tion probabilities (to be calculated at thepop level, since they are equal
for all individuals) and count the individuals belonging to the respective
subpopulations before they change their attitudes, and to apply the transition
probabilities to the individual transitions.

This leads to the following MIMOSE program for the dove–hawk–law-
abider micro model (remember that 0 means ‘hawk’, 1 means ‘dove’, and 2
or default means ‘law-abider’ – MIMOSEcase expressions must always
contain adefault part):

individual :=
{
r : real := uniform(1, 0.0, 1.0);
strategy : int := case strategy 1 of

0 : 1 if r < p.pHawkToDove 1 else
2 if r < p.pHawkToDove 1 + p.pHawkToLawA 1
else strategy 1;

1 : 0 if r < p.pDoveToHawk 1 else
2 if r < p.pDoveToHawk 1 + p.pDoveToLawA 1
else strategy 1;

3For a detailed description how random numbers are generated see Appendix C, p. 272.

126 Multilevel simulation models

default : 0 if r < p.pLawAToHawk 1 else
1 if r < p.pLawAToHawk 1 + p.pLawAToDove 1
else strategy 1;

end;
p : list of pop;

}
pop :=
{
indiv : list of individual;
hawk : int := haselements(indiv.strategy, 0);
dove : int := haselements(indiv.strategy, 1);
lawa : int := haselements(indiv.strategy, 2);
yieldh : real

:= kappa*(dove*rhd + hawk*rhh + lawa*rhl)*hawk;
yieldd : real

:= kappa*(dove*rdd + hawk*rdh + lawa*rdl)*dove;
yieldl : real

:= kappa*(dove*rld + hawk*rlh + lawa*rll)*lawa;
pHawkToDove : real := nu * exp(yieldd - yieldh);
pHawkToLawA : real := nu * exp(yieldl - yieldh);
pDoveToHawk : real := nu * exp(yieldh - yieldd);
pDoveToLawA : real := nu * exp(yieldl - yieldd);
pLawAToHawk : real := nu * exp(yieldh - yieldl);
pLawAToDove : real := nu * exp(yieldd - yieldl);
lHawk : list of int := append(lHawk 1, hawk);
lDove : list of int := append(lDove 1, dove);
lLawA : list of int := append(lLawA 1, lawa);

}

The results of this variant of our model are almost the same as the results
of the macro model (at least for the parameters used here:kappa = 0.0001
andnu = 0.001) – see Figure 6.11.

As before, both hawks and doves disappear and all individuals change
their strategies to be law-abiders, after a period when both ‘old’ The only
difference is that in the multilevel variant of the model the final state where
all individuals are law-abiders is reached in finite time — in the macro model
the proportion of doves and hawks would always be positive (although very
small) in finite time.

Thus, in this simple case, it is not the modelling technique that deter-
mines the result: both formalizations have qualitatively similar results. This
need not be the case in all comparable models (cf. Troitzsch 1996: 181).
Other formalizations of the transition probabilities – for example, another
monotonic function instead of the exponential – might yield qualitatively
different results.

Commentary 127

Figure 6.11: Results of the dove–hawk–law-abider micro model

Time

Doves, hawks and law-abiders

 1 1000334 667

 0.00

100.00

 33.33

 66.67

Commentary

So far we have seen MIMOSE as a powerful instrument for describing
multilevel model (and also, in the last example, for transforming macro mod-
els into multilevel models). The MIMOSE approach allows the description
of a model and its objects in a manner that does not involve the overhead
necessary for initialization and analysis because these tasks are done by the
MIMOSE system and user interface. The only ‘overhead’ task modellers
have to keep in mind is providing attributes whose history should be kept, but
these history attributes can always be constructed in the following manner:

obj := {
attribute : ... := ...;
history : list of <attribute type>

:= append(history 1, attribute);
...

};

Future releases of MIMOSE might perhaps provide the user with a mech-
anism by which attributes can be marked in order that their history can be
kept automatically.

MIMOSE also lends itself to designing multiple experiments and running
them at the same time, thus saving modellers’ waiting time and allowing

128 Multilevel simulation models

them to display the results of several runs in the same graph.
Moreover, it should have become clear from all three examples that

refinement of a model (multiple experiments, new features such as replacing
a constant by a variable attribute, or deriving a multilevel model from a
macro model) can be done in a quite straightforward manner once a user has
become acquainted with the functional language structure of the MIMOSE
system.

In the examples discussed above, there were always interactions be-
tween objects at different levels – for example, between an object and the
group or subpopulation to which it belongs. From the start, MIMOSE was
designed for this type of model, although mechanisms were also provided
for interactions within one level – for example, between an object and its
neighbours (the curved arrows at the bottom of Figure 6.1). However, models
of this type are quite clumsy to initialize, because all the neighbours have to
be mentioned explicitly in the initialization. This is why MIMOSE is less
appropriate for such models.

Further reading

Synergetics was founded in the early 1970s by Hermann Haken. His intro-
duction

• Haken, H. (1978)Synergetics: An Introduction, Springer Series in
Synergetics, vol. 1. 2nd enlarged edn. Springer-Verlag, Berlin

was first published in 1977 and is now in its third (German) edition. It deals
with self-organization in multicomponent systems in physics, chemistry,
biology, and – in a few pages – sociology. The first attempt at modelling
social systems with the methodological tools of synergetics was made by

• Weidlich, W. and Haag, G. (1983)Concepts and Models of a Quan-
titative Sociology. The Dynamics of Interacting Populations.Springer
Series in Synergetics, vol. 14. Springer-Verlag, Berlin

from which the first example of this chapter was taken. Both volumes are
devoted to the mathematical analysis of multicomponent systems. The book
by

• Helbing, D. (1994)Quantitative Sociodynamics. Stochastic Methods
and Models of Social Interaction Processes.Kluwer, Dordrecht

Further reading 129

presents a number of examples of opinion formation processes and combines
the synergetic perspective with game theory. This book, too, is mathemati-
cally oriented.

For the emerging role of sociophysics see for instance

• Deffuant, G.,et al. (2003) Simple is beautiful and necessary.Jour-
nal of Artificial Societies and Social Simulationhttp://www.soc.
surrey.ac.uk/JASSS/6/1/6.html.

Sociobiology has also made wide use of synergetic techniques, espe-
cially in

• Wilson, E. O. and Lumsden, C. (1981)Genes, Mind, and Culture. The
Coevolutionary Process. Harvard University Press, Cambridge, MA.

Wilson and Lumsden introduce the concept of gene-culture translation be-
tween the level of the individual and the ‘macroculture’. Their ‘assimilation
functions’, set by ‘epigenetic rules’, are mathematically the same as our
individual transition probabilities (µ), and their ‘ethnographic curves’ are
the same as our macro probabilities of finding a population in a given state
(p).

MIMOSE as a simulation tool for the analysis of multicomponent sys-
tems was first introduced in Michael M̈ohring’s PhD thesis (M̈ohring 1990).
A number of applications can be found in Part 2 of

• Troitzsch, K. G.et al. (eds) (1996)Social Science Microsimulation,
pp. 105–154. Springer-Verlag, Berlin.

A German journal,Ethik und Sozialwissenschaften, devoted one of its
recent issues to the discussion of the applicability of synergetics to the social
sciences: see

• Haken, H. (1996) Synergetik und Sozialwissenschaften,Ethik und
Sozialwissenschaften. Streitforum für Erwägungskultur7; 587–594.

which is the main article in the issue, as well as the critical discussion on
pp. 595–657 (by 33 authors), and the rejoinder on pp. 658–75.

Chapter 7

Cellular automata

Imagine a rectangular grid of light bulbs, such as those you can see display-
ing scrolling messages in shops and airports. Each light bulb can be either
on or off. Suppose that the state of a light bulb depended only on the state of
the other light bulbs immediately around it, according to some simple rules.
Such an array of bulbs would be a cellular automaton (CA). This chapter will
show that simulations with complex behaviour can be built using cellular
automata, and that such simulations can model social dynamics where the
focus is on the emergence of properties from local interactions.

We start by defining what a CA is and then consider some standard exam-
ples, mainly developed within the physical sciences. These can be adapted to
model phenomena such as the spread of gossip and the formation of cliques.
This leads us to a more detailed consideration of some social science models,
on ethnic segregation, relations between political states and attitude change.
Finally, we show how cellular automata models can be programmed.

A CA has the following features:

1. It consists of a number of identical cells (often several thousand or
even millions) arranged in a regular grid. The cells can be placed in
a long line (a one-dimensional CA), in a rectangular array or even
occasionally in a three-dimensional cube. In social simulations, cells
may represent individuals or collective actors such as countries.

2. Each cell can be in one of a few states – for example, ‘on’ or ‘off’,
or ‘alive’ or ‘dead’. We shall encounter examples in which the states
represent attitudes (such as supporting one of several political parties),
individual characteristics (such as racial origin) or actions (such as

The Game of Life 131

cooperating or not cooperating with others).
3. Time advances through the simulation in steps. At each time step, the

state of each cell may change.
4. The state of a cell after any time step is determined by a set of rules

which specify how that state depends on the previous state of that cell
and the states of the cell’s immediate neighbours. The same rules are
used to update the state of every cell in the grid. The model is therefore
homogeneous with respect to the rules.

5. Because the rules only make reference to the states of other cells
in a cell’s neighbourhood, cellular automata are best used to model
situations where the interactions are local. For example, if gossip
spreads by word of mouth and individuals only talk to their immediate
neighbours, the interaction is local and can be modelled with a CA.

To summarize, cellular automata model a world in which space is repre-
sented as a uniform grid, time advances by steps, and the ‘laws’ of the world
are represented by a uniform set of rules which compute each cell’s state
from its own previous state and those of its close neighbours.

Cellular automata have been used as models in many areas of physical
science, biology and mathematics, as well as social science. As we shall see,
they are good at investigating the outcomes at the macro scale of millions
of simple micro-scale events. One of the simplest examples of cellular au-
tomata, and certainly the best-known, is Conway’s Game of Life (Berlekamp
et al.1982).

The Game of Life

In the Game of Life, a cell can only survive if there are either two or three
other living cells in its immediate neighbourhood, that is, among the eight
cells surrounding it (see Figure 7.1). Without these companions, it dies,
either from overcrowding if it has too many living neighbours, or from
loneliness if it has too few. A dead cell will burst into life provided that
there are exactly three living neighbours. Thus, for the Game of Life, there
are just two rules:

1. A living cell remains alive if it has two or three living neighbours,
otherwise it dies.

2. A dead cell remains dead unless it has three living neighbours, and it
then becomes alive.

132 Cellular automata

Figure 7.1: The black cells are the neighbours of the central cell

Figure 7.2: An example of the evolution of a pattern using the rules of the
Game of Life

Surprisingly, with just these two rules, many ever-changing patterns of
live and dead cells can be generated. Figure 7.2 shows the evolution of a
small pattern of cells over 12 time steps. To form an impression of how the
Game of Life works in practice, let us follow the rules by hand for the first
step, shown enlarged in Figure 7.3.

The black cells are ‘alive’ and the white ones are ‘dead’ (see Figure 7.3).
The cell at b3 has three live neighbours, so it continues to live in the next
time step. The same is true of cells b4, b6 and b7. Cell c3 has four live
neighbours (b3, b4, c4 and d4), so it dies from overcrowding. So do c4, c6
and c7. Cells d4 and d6 each have three neighbours and survive. Cells e2 and

The Game of Life 133

Figure 7.3: The initial arangement of cells

1 2 3 4 5 6 7 8 9

a
b

c
d

e
f
g
h

e8 die because they only have one living neighbour each, but e4 and e6, with
two living neighbours, continue. Cell f1, although dead at present, has three
live neighbours at e2, f2 and g2, and it starts to live. Cell f2 survives with
three living neighbours, and so do g2 (two neighbours alive) and g3 (three
neighbours alive). Gathering all this together gives us the second pattern in
the sequence shown in Figure 7.2.

It is clear that simulating a CA is a job for a computer. Carrying out
the process by hand is very tedious and one is very likely to make mistakes
(although Schelling, whose work on segregation in the 1970s is discussed
below, did everything with pencil and paper, while Conway is reputed to
have worked out his Game of Life using dinner plates on a tiled kitchen
floor!).

The eighth pattern in Figure 7.2 is the same as the first, but inverted. If
the sequence is continued, the fifteenth pattern will be seen to be the same
as the first pattern, and thereafter the sequence repeats every 14 steps. There
are a large number of patterns with repeating and other interesting properties
and much effort has been spent on identifying these. For example, there are
patterns that regularly ‘shoot’ off groups of live cells, which then march off
across the grid (Berlekampet al.1982).

134 Cellular automata

Other cellular automata models

The Game of Life is only one of a family of cellular automata models. All
are based on the idea of cells located in a grid, but they vary in the rules
used to update the cells’ states and in their definition of which cells are
neighbours. The Game of Life uses the eight cells surrounding a cell as
the neighbourhood that influences its state. These eight cells, the ones to
the north, north-east, east, south-east, south, south-west, west and north-
west, are known as itsMoore neighbourhood, after an early CA pioneer
(Figure 7.4).

Figure 7.4: Cell neighbourhoods

The von Neumann neighbourhood The Moore neighbourhood

The parity model

A model of some significance for modelling physical systems is the parity
model. This model uses just four cells, those to the north, east, south and
west, as the neighbourhood (thevon Neumann neighbourhood, shown in
Figure 7.4). The parity model has just one rule for updating a cell’s state: the
cell becomes ‘alive’ or ‘dead’ depending on whether the sum of the number
of live cells, counting itself and the cells in its von Neumann neighbourhood,
is odd or even. Figure 7.5 shows the effect of running this model for 124
steps from a starting configuration of a single filled square block of five by
five live cells. As the simulation continues, the pattern expands. After a few
more steps it returns to a simple arrangement of five blocks, the original
one plus four copies, one at each corner of the starting block. After further
steps, a richly textured pattern is created once again, until after many more
steps, it reverts to blocks, this time consisting of 25 copies of the original.
The regularity of these patterns is due to the properties of the parity rule. For
example, the rule is ‘linear’: if two starting patterns are run in separate grids

Other cellular automata models 135

for a number of time steps and the resulting patterns are superimposed, this
will be the same pattern one finds if the starting patterns are run together on
the same grid.

Figure 7.5: The pattern produced by applying the parity rule to a square
block of live cells after 124 time steps

As simulated time goes on, the parity pattern enlarges. Eventually it will
reach the edge of the grid. We then have to decide what to do with cells that
are on the edge. Which cell is the west neighbour of a cell at the left-hand
edge of the grid? Rather than devise special rules for this situation, the usual
choice is to treat the far right row of cells as the west neighbour of the far
left row and vice versa, and the top row of cells as the south neighbours
of the bottom row. Geometrically, this is equivalent to treating the grid as a
two-dimensional projection of a torus (a doughnut-shaped surface). The grid
now no longer has any edges which need to be treated specially, just as a
doughnut has no edges.

One-dimensional models

The grids we have used so far have been two-dimensional. It is also possible
to have grids with one or three dimensions. In one-dimensional models,
the cells are arranged along a line (which has its left-hand end joined in a
circle to its right-hand end in order to avoid edge effects). There are only 32
different rules for a one-dimensional CA because there are only that many

136 Cellular automata

combinations of alive and dead states for the cell and its two neighbours,
one to the left and one to the right.1 Wolfram (1986) devised a classification
scheme for the rules of one-dimensional automata.

Figure 7.6: The pattern produced after 120 steps by rule 22 starting from a
single live cell at the top centre

For example, Figure 7.6 shows the patterns that emerge from a single
seed cell in the middle of the line, using a rule that Wolfram classifies as
rule 22. This rule states that a cell becomes alive if and only if one of
four situations applies: the cell and its left neighbour are alive, but the right
neighbour is dead; it and its right neighbour are dead, but the left neighbour
is alive; the left neighbour is dead, but the cell and its right neighbour are
alive; or the cell and its left neighbour are dead, but the right neighbour is
alive. Figure 7.6 shows the changing pattern of live cells after successive
time steps, starting at time 0 at the top and moving down to step 120 at the
bottom. Further time steps yield a steadily expanding but regular pattern of
triangles as the influence of the initial live cell spreads to its left and right.

Models of interaction

These examples have shown that cellular automata can generate pretty pat-
terns, but for us their interest lies in the extent to which they can be used

1The state of the three cells can be represented as a binary number with three bits, e.g.
101. There are 256 such three bit numbers, each with a different combination of 1s and 0s.
However, some are just a mirror image of another (e.g 110 and 011) and therefore give the
same patterns, and only 32 of the remainder lead to states that are not all dead or all alive.

Other cellular automata models 137

to model social phenomena. We shall begin by examining two very simple
models that can be used to draw some possibly surprising conclusions before
describing a more complex simulation which illustrates a theory of the way
in which national alliances might arise.

THE GOSSIP MODEL

Most commonly, individuals are modelled as cells and the interaction be-
tween people is modelled using the cell’s rules. For instance, one can model
the spread of knowledge or innovations or attitudes in this way. Consider, for
example, the spread of an item of salacious gossip from a single originator
to an interested audience. Each person learns of the gossip from a neighbour
who has already heard the news, and may then pass it on to his or her
neighbour (but if they don’t happen to see their neighbour that day, they
will not have a chance to spread the news). Once someone hears the gossip
once, he or she remembers it and does not need to hear it again.

This scenario can be modelled with a CA. Each cell in the model has
two states: ignorance about the item of gossip (the equivalent of what in the
previous discussion we have called a ‘dead’ cell) or knowing the gossip (the
equivalent of being ‘alive’). We will colour white a cell that does not know
the gossip and black one that does. A cell can only change state from white to
black when one of its four von Neumann neighbours knows the gossip (and
so is coloured black) and passes it on. There is a constant chance that within
any time unit a white cell will pick up the gossip from a neighbouring black
cell and turn black. Once a cell has heard the gossip, it is never forgotten, so
in the model, a black cell never reverts to being white. Thus the rules that
drive the cell state changes are as follows:

1. If the cell is white, and it has one or more black neighbours, consider
each black neighbour in turn. For each black neighbour, change to
black with some specific probability, otherwise remain white.

2. If the cell is black, the cell remains black.

The rules we have mentioned previously have all been deterministic.
That is, given the same situation, the outcomes of the rule will always be the
same. However, the gossip model is stochastic: there is only a chance that a
cell will hear the gossip from a neighbour. We can simulate this stochastic
element with a random number generator (see Appendix C). Suppose the
generator produces a random stream of integer numbers between 0 and
99. A 50 per cent probability of passing on gossip can be simulated by
implementing the first rule as follows:

138 Cellular automata

1. If the cell is white, then for each neighbour that is black, obtain a
number from the random number generator. If this number is less than
50, change state from white to black.

Figure 7.7: The spread of gossip: (a) with a 50 per cent probability of passing
on the news; (b) with a 5 per cent probability; (c) with a 1 per cent probability

(a) (b) (c)

Figure 7.7(a) shows the simulation starting from a single source, using
a 50 per cent probability of passing on gossip. The gossip spreads roughly
equally in all directions. Because there is only a probability of passing on
the news, the area of black cells is not a perfect circle but deviations from a
circular shape tend to be smoothed out over time.

With this model, we can easily investigate the effect of different prob-
abilities of communicating the gossip by making an appropriate change to
the rules. Figure 7.7(b) shows the result of using a 5 per cent probability
(the first rule is rewritten so that a cell only changes to black if the random
number is less than 5, rather than 50). Surprisingly, the change makes rather
little difference. The shape of the black cells is a little more ragged and of
course the news travels more slowly because the chance of transmission is
much lower (Figure 7.7(b) required about 250 time steps, compared with
50 steps for Figure 7.7(a)). However, even with this rather low probability
of transmission, gossip stills spreads. We can go lower still: Figure 7.7(c)
shows the outcome of a 1 per cent probability of transmission. The shape of
the black cells remains similar to the previous two simulations, although the
rate of transmission is even slower (the figure shows the situation after 600
time steps). The model demonstrates that the spread of gossip (or of other
‘news’ such as technological innovations or even of infections transmitted
by contact) through local, person-to-person interactions is not seriously
impeded by a low probability of transmission on any particular occasion,
although low probabilities will result in slow diffusion.

Other cellular automata models 139

The model has assumed that once individuals have heard the news, they
never forget it. Black cells remain black for ever. This assumption may be
correct for some target situations, such as the spread of technological know-
how. But it is probably unrealistic for gossip itself. What happens if we
build a chance of forgetting into the model? This can be done by altering
the second rule to:

2. If a cell is black, it changes to white with a fixed small probability.

Figure 7.8: The spread of gossip when individuals have a 10 per cent chance
of transmitting the news and a 5 per cent chance of forgetting it

Setting the probability of transmitting the gossip to 10 per cent and the
probability of forgetting the gossip to 5 per cent gives the result shown in
Figure 7.8. The small white holes represent the cells that have ‘forgotten’
the gossip. However, these white areas do not spread because a cell that has
forgotten the news is still surrounded by other black cells, which have a
high chance of retransmitting the news to the newly white cell, thus quickly
turning it black again. In short, provided that the probability of transmission
from all the neighbour cells is greater than the chance of forgetting, the
pattern of a growing roughly circular patch of cells which have heard the
news is stable in the face of variations in the assumptions we make about
transmission and forgetting.

THE MAJORITY MODEL

In the gossip model, a cell turned black if it heard the gossip from any of its
neighbours. This therefore was a model of person-to-person interaction. Now

140 Cellular automata

let us consider a model in which a cell changes state according to the joint
states of all of its neighbours. For example, people might adopt a fashion
only if the majority of their friends have already adopted it. Once again, the
simulation will consist of a CA with cells each of which have two states:
white and black. The simplest model has just a single rule:

1. The new cell state is the state of the majority of the cell’s Moore
neighbours, or the cell’s previous state if the neighbours are equally
divided between white and black.

There are eight Moore neighbours. Thus the rule says that a cell is white
if there are five or more white cells surrounding it, black if there are five or
more black cells around it, or remains in its previous state if there are four
white and four black.

Figure 7.9: (a) A random distribution of white and black cells; (b) after many
time steps using the majority rule

 0 22

(a) (b)

Starting from a random distribution of white and black cells, the result
of running this rule is a patchwork of small white and black blocks (Fig-
ure 7.9(b)). Cells surrounded by cells of the other colour change to the colour
of the majority, so that isolated cells coalesce to form blocks of one colour.
Cells that happen to have half white and half black cells as their neighbours
stay unchanged and form stable boundaries to these blocks. Once the cells
have achieved this speckled pattern, there is no longer any opportunity for
change.

The situation is very different, however, with a small alteration to the
rule. Suppose that some people are sometimes more susceptible to the dic-
tates of fashion than others. Some white cells will change to black if they

Other cellular automata models 141

have as few as four black neighbours, whereas others will only change if
they have at least six black neighbours. Similarly for the black cells. The
likelihood of being either susceptible or resistant to the fashion is distributed
randomly in the model, so that overall, there are the same number at each
time step of those who require six neighbours of the other colour to change
and of those who require only four to change. In short, in this modification of
the model, we no longer have every cell the same, but some varying amount
of individual difference.

Figure 7.10: The majority model, with random individual variation: (a) after
5 steps; (b) after 19 steps; and (c) after 482 steps

 7 19

(a) (b)
482

(c)

Although the modification from the original model appears to be minor,
the effect is dramatic. Instead of the blocks of black and white remaining
‘frozen’ once they have formed, the small randomly changing individual
differences are enough to ease the coagulations into gradually larger patches
of a shared colour. The sequence in Figure 7.10 shows this happening.
Figure 7.10(a), after five time steps, closely resembles Figure 7.9, obtained
with the strict majority rule. But after 19 steps the blocks begin to join up

142 Cellular automata

(Figure 7.10(b)) and by step 482, the white and black cells have formed
into large clusters (Figure 7.10(c)). It is often the case in cellular automata
models that deterministic models behave in different ways at the macro level
compared with variants with some degree of randomness built in.

In this subsection, we have discussed two applications of cellular au-
tomata to the modelling of simple social phenomena. The ‘gossip’ model
was based on a rule that involved the ‘infection’ of a cell by at least one of its
neighbours. The majority rule involved counting the number of neighbours
that were of one colour. In each case we saw the emergence of macro-level
patterns from the operation of these simple rules. As we noted in Chapter 1,
it is nearly impossible to predict the form of these macro-level patterns just
by considering the rules operating at the micro-level individual cell.

In both examples it is easy to think of the grid in rather literal, geograph-
ical terms, with people occupying each cell on an actual surface. However,
the analogy between the model and the target population does not have to
be, and usually will not be, as direct as this. The grid can be mapped on to
many different kinds of social relationship. For example, the interactions on
which the gossip model depends could be by telephone, over the Internet or
in any other way in which individuals communicate with particular others.

An example: Axelrod’s tribute model

The cells of a CA can also be used to represent entities other than individuals.
An interesting example is Axelrod’s (1995) investigation of how new polit-
ical actors, such as alliances and empires, can emerge from smaller entities
such as nation states. Axelrod observes that throughout history, new empires
have formed in which a central authority has subordinated previously inde-
pendent states, exerting control over them and asserting the right to collective
action. Equally often, such entities have split into fractions that become
able to exert their own authority and are recognized as states in their own
right. The United States formed itself into a new actor, recognized by other
nations, when it established a federal government over the 13 component
states in the eighteenth century. The European Union is struggling to achieve
something similar today. Meanwhile, the Soviet empire first annexed many
of the semi-independent states of eastern Europe and Asia and then split up
again. Similar stories can be told about the Roman and Chinese empires.

The essential features of these changes are that they are ‘endogenous’,
that is, the formation and dissolution of empires and alliances have taken
place without any external guiding hand; and in most if not all examples,

Other cellular automata models 143

there has been an element of coercion involved. It is the process of formation
of aggregate actors that is the focus of Axelrod’s model. The relationships
between states is modelled as a ‘tribute’ system in which actors are able to
demand payment of wealth, with the threat of war if payment is not made.
The wealth that the stronger actor obtains from the weaker is used to extract
further resources from other actors. Alliances in which groups of states band
together to strengthen their hand are also possible.

To simplify the dynamics of the model, the actors are confined to a one-
dimensional world, and are laid out along the circumference of a circle (so
that every actor has neighbours on both sides). Actors are only able to inter-
act (demand tribute from or form alliances with) their immediate neighbours
to the left and to the right. The model is a form of one-dimensional CA, but
with rather more complicated rules than previous examples.

At every time step, a randomly chosen selection of actors is activated.
Each may demand a tribute from either of its neighbours. The target of
the demand can either pay the tribute or decide to resist and fight. If the
target elects to fight, the battle drains resources from both sides: each loses
a quarter of the other side’s accumulated wealth (or proportionately less if
either side does not have that much). Thus the wealthier side inflicts more
damage than the poorer side. This, then, constitutes a state change rule
for this CA: the state of a cell is measured by its wealth, the tribute rule
determining how that wealth changes at each step. In addition, there is a rule
which provides every cell with the same small additional amount of wealth
each time step to replenish the overall stock of money.

As a side-effect of the interactions between them, actors develop ‘com-
mitments’ to each other. Commitments between pairs of actors increase as
a result of three types of relationship: subservience, when one actor pays
tribute to another, protection, when one actor receives tribute from the other,
and friendship, when the two actors fight on the same side against a third
party. On the other hand, commitment decreases when two actors fight on
opposite sides. The commitments between actors have consequences for the
choices they make about paying tribute or fighting. If two actors fight, adja-
cent actors will join in on the side to which they have greater commitment
and contribute wealth in proportion to their commitments. Thus alliances
can form in which adjacent actors have commitments to each other and pool
their wealth. The target from which an alliance may try to extract tribute can
be either of its neighbours (or neighbouring alliances) – see Figure 7.11.

Figure 7.12 shows the results of one run over 1000 time steps (‘years’).
The top part of the chart shows the wealth of each actor, year by year. Three
actors, 2, 4 and 10, clearly dominated this history, each having steadily

144 Cellular automata

Figure 7.11: A typical scenario in Axelrod’s tribute model

1 2 11 3 54 6 87 9 10

Attacker Target

increased its wealth during the course of the millennium. Actor 9 began well,
but its fortunes slumped after about 400 years. Different initial distributions
of wealth to the actors and different selections of active actors in each time
step result in different histories, some including dramatic collapses in wealth
of even the richest participants as a result of the outbreak of damaging fights
between them (a ‘world war’).

Figure 7.12: The outcome of running Axelrod’s model for 1000 time steps

The lower part of Figure 7.12 shows the pattern of commitments between
actors at the end of the 1000-year run. The relative size of the black block
within each rectangle indicates the strength of the commitment between the
row and column actors. Each of the three rich actors is at the centre of a

Extensions to the basic model 145

strong alliance in which their allies are heavily committed to each other and
to the central actor.

The simulation shows that a simple model of interacting states can
demonstrate the emergence of clusters that can act as alliances, with all the
actors in a cluster operating as one. Axelrod defines a cluster as a set of
adjacent states committed to each other at a level of at least 50 per cent.
Members of these clusters work together, as shown by the fact that members
never gang up to fight the strongest member and fights between weaker
members of the cluster are rare. Moreover, the weaker members (that is,
the poorer members) only rarely start fights of their own against external
actors. When they do, the strongest actor tends to get dragged in, sometimes
leading to the eventual collapse of the cluster (an analogue of the ‘imperial
overstretch’ that has brought down several real empires). It does seem as
though the strong protect the weak in the model. Moreover, the other actors
could be seen as taking into account the total wealth of the whole cluster
when contemplating a fight. This suggests that the clusters really can be
regarded as new actors, in the same way as the United States is a political
actor in its own right, not just the aggregation of its constituent states.

Axelrod observes that the value of this simulation does not depend on the
degree of correspondence between his simulated actors and real nation states.
Indeed, as another characteristic of his model is that each time it is run it
produces a different sequence of events, with different clusters being formed,
it would be difficult to see how one could create a model that behaved
in just the way that the actual history of political development occurred.
Rather, the value of the model is in clarifying and specifying new questions
that political scientists might want to explore. He notes (Axelrod 1995: 37)
that the construction of the model raised such questions as ‘What are the
minimal conditions for a new actor to emerge?’, ‘What tends to promote such
emergence?’, ‘How is the dynamics affected by the number of elementary
actors?’ and ‘What can lead to the collapse of an aggregate actor?’ which
had not previously been considered and which, if explored with the model,
might lead to new ways of thinking about comparable questions in the real
world.

Extensions to the basic model

The basic cellular automata described in the previous sections can be ex-
tended in a number of useful ways. So far, the models have actors fixed
in particular locations, one actor per cell. An extension that is valuable for

146 Cellular automata

models that involve migration is to allow the actors to move over the grid.
This means that we now have to distinguish the actors from the cells in which
they happen to be placed, and we also have to consider whether more than
one actor can occupy a cell at any particular moment. A second extension
allows actors to be influenced by more than their immediate neighbours;
state changes in such models might depend on the aggregate effect of the
states of all other actors in the model, or some proportion of them.

Migration models

In a migration model, actors are not confined to a particular cell but can
move around. Rules, similar to state change rules, determine when and to
where they move. An interesting application of a migration model is found in
Schelling’s (1971) study of ethnic segregation in the United States. Schelling
supposed that people had a ‘threshold of tolerance’ of other ethnic groups,
such that they were content with where they lived provided that at least a
proportion of their neighbours were of the same ethnic group as themselves.
If, for instance, the threshold of tolerance was 40 per cent, people were
content to stay provided that at least four in ten of their neighbours were
from the same ethnic group. If this were not so, they would try to move to
another neighbourhood in which at least 40 per cent were of their own group.

The conventional assumption is that ethnic segregation in the USA is at
least partly due to the fact that whites are prejudiced and have a tolerance
threshold of over 50 per cent. They therefore moved out of urban neigh-
bourhoods that had a majority of blacks, leaving the neighbourhood with a
still higher proportion of black people and thus accelerating the tendency
towards complete segregation. This phenomenon has come to be known as
‘urban flight’. Schelling’s point was that tolerance thresholds much lower
than 50 per cent could lead to the same result. Even a threshold as low as 30
per cent could result in almost complete segregation. Thus although people
might be quite content with being in the minority in a neighbourhood, so
long as they demanded that some small proportion of their neighbours were
of the same ethnic group as themselves, segregation could emerge.

We can build a CA migration model to demonstrate this result. A cell on
the grid can be in any of three states: occupied by a ‘white’ actor; occupied
by a ‘black’ actor; or empty. The process driving the simulation is to select a
cell on the grid at random. Then if the cell is occupied by an actor, the actor is
examined to see whether it is ‘content’, that is, whether the number of Moore
neighbours of the same colour is at least equal to its tolerance threshold. If

Extensions to the basic model 147

the actor is not ‘content’, a nearby cell is found that is both unoccupied and
has neighbours such that the actor would be content there. This is done by
looking around the actor’s cell until either a suitable cell is found or every
cell on the grid has been tried. If a suitable cell is located, the actor moves
there, vacating its previous cell. The simulation then chooses another cell at
random to process and continues in this way until every actor is content.

Figure 7.13: The effect of a 38 per cent threshold tolerance with Schelling’s
model: random starting configuration on the left and final configuration on
the right

Figure 7.13 shows what happens for a threshold tolerance of 38 per cent
(at least three of a cell’s eight neighbours must be the same colour). On
the left is the starting configuration, with black and white actors distributed
over the grey grid at random. On the right is the final configuration, in
which all the actors are ‘content’ with their positions and their neighbours.
Comparing the starting and final configurations, one can see a marked degree
of clustering in the latter. With higher values of the tolerance threshold, the
clusters are even clearer. While this kind of model relates most obviously
to ethnic segregation, it can also be applied to relationships between any
number of recognizably distinct classes: not just blacks and whites, but rich
and poor; and not only to spatial segregation, but also to differentiation into
groups and cliques.

The example has shown the use of a migration model in which each
cell can contain only one actor, as befits a simulation of people living in
neighbourhoods. It is also possible to have more than one actor in a cell, but
then the usual spatial metaphor of cellular automata models is lost. In the
segregation model, a migrating actor searches for a suitable vacant cell at
random, eventually if necessary searching the whole grid. In other cases, a
more restrictive rule might be preferable. For example, Hegselmann (1996)

148 Cellular automata

describes a model used to study the evolution of support networks in which
migration is constrained to a ‘migration window’ consisting of the 11× 11
square of cells surrounding the migrating actor.

Extended neighbourhoods

We have considered models in which actors’ changes of state have depended
on the states of other actors within the local neighbourhood, defined as
either the four cells above and below, left and right (the von Neumann
neighbourhood) or all eight surrounding cells (the Moore neighbourhood).
To distinguish this set of cells from others, such as the locality within which
a migrating actor may move, we shall call the area within which cells can
affect the state of the central cell, the ‘interaction’ neighbourhood (after
Hegselmann 1996). In some models it may be useful to define the interaction
neighbourhood as much more extensive than just the four or eight immediate
neighbours, and in some cases the interaction neighbourhood can include all
the cells in the grid. In the latter models, the state of every actor affects every
other actor. To preserve some degree of locality, however, such models often
use an inverse power law, meaning that while all actors influence any given
actor to some extent, the degree to which they do so decreases according to
the distance between the influencing and the influenced actors.

An example of such a model can be found in work by Latané and
his colleagues. In the 1970s and early 1980s, Latané proposed a theory
of what he called ‘social impact’ (Latané 1981). This theory is concerned
with explaining the degree of influence that people have on the attitudes and
beliefs of others. The theory states that

the impact of other people on a given individual is a multiplica-
tive function of the ‘strength’ of members of the group (how
credible or persuasive they are), their ‘immediacy’ (a decreasing
function of their social distance from the individual) and their
number. (Latańe 1996: 65)

This theory has been extensively tested in a number of situations and re-
ceived empirical support. However, as phrased, it concerns only the impacts
on a given individual. In a group, individuals will be influenced by other
members of the group, but will also in turn influence the other members. This
reciprocal influencing is more complicated to analyze but has been simulated
in a model called SITSIM (Latańe 1996).

In the simplest model, a large number of actors are distributed over a grid,

Extensions to the basic model 149

one actor per cell. All actors have one of two opinions, assigned randomly
at the start of the simulation: following our earlier examples, we shall label
these opinions ‘white’ and ‘black’ respectively (they could be opinions for or
against abortion, for or against a political party and so on). Those other actors
with the same opinion as a given individual we shall call its ‘supporters’,
and those of the other opinion ‘opposers’. To each actor is also randomly
assigned a ‘strength’ with which an opinion is held. Latané uses an inverse
square law of distance, so that the social impact of one supporterj on an
individual a is proportional to its strength of opinion (Sj) and inversely
proportional to the square of its distance from the individual (daj). The total
impact from all theN supporters on an individuala is equal to the square
root of the sum of all the supporters’ impacts squared, or as a formula:

ias =

√√√√√ N∑
j=1

(
Sj

d2
aj

)2

The impact of the opposers is calculated similarly, with the summation
performed over all the opposing actors. Finally, the actor changes state to
join the opposers if the total impact from the opposers,iao, is greater than the
total impact from the supporters,ias. This is the state change rule equivalent
to those in other cellular automata models. It does not differ in principle from
standard cellular automata model state change rules except that it includes
contributions from actors all over the grid. Even an actor many cells distant
makes a small contribution to the total impact because of the inverse square
in the formula.

The behaviour of systems of this kind in which there are multiple recip-
rocal interactions can be very difficult to predict in advance of examining a
simulation. In fact, the usual behaviour is that opinions polarize and clusters
appear. Both these features are shown in Figure 7.14. On the left is the initial,
random starting situation, set up so that half the actors are white and the rest
black. After the simulation has run to stability, the number of actors with
a ‘white’ opinion has decreased slightly and they have formed into three
clusters (remembering that the grid is a torus, with the neighbours of the cells
on the left edge of the diagram being the cells on the right edge). Another
interesting characteristic of the simulation is that, although one of the groups
generally increases in number at the expense of the other, the minority never
completely disappears.

This clustering behaviour is found even when the parameters of the sim-
ulation are varied within wide limits. For instance, clusters form whatever
the proportions of white and black actors at the start, unless the minority

150 Cellular automata

Figure 7.14: Typical outcome (right) of the SITSIM model, from a starting
configuration (left) of 50 per cent white actors. The white actors have formed
three clusters by the end of the run

is initially very small. It is also consistent for different random starting
configurations and variations in the social impact formula (for example, the
distance law does not need to be an inverse square law; it could be a cubic
law, although it does need to be at least equal to the dimensionality of the
grid).

If the model is extended so that each actor has several disjoint binary
attributes, each of which is independently subject to social impact, correla-
tions develop between the clusters for each attribute. For example, attribute
A might be whether you vote for the Left or the Right, and attribute B
whether you prefer wine or beer. Let us assume that an individual’s political
preference does not affect his or her favourite drink, and vice versa. However,
although these attributes are independent at the individual level, the clusters
that form will be correlated. That is, an actor who is in a socialist cluster
might be more likely to be found in a beer drinking cluster, and conservatives
more likely to be wine drinkers (or, depending on how the random numbers
play out, vice versa). Rockloff and Latané (1996) give the example of Texans
who speak with a drawl and wear cowboy boots. Speaking with a drawl does
not cause one to wear cowboy boots, nor does the choice of boots affect the
way one speaks, yet in Texas these two attributes are correlated.

The SITSIM model has enabled the investigation of the implications of
social impact theory when it is applied recursively (that is, with actors affect-
ing each other), something that would have been difficult or impossible to do
analytically, but is quite easy to simulate. The simulation has shown that one
does get quite robust emergent effects, such as clustering and correlation

Software 151

between independent attributes. Following on from their simulation work,
Latańe and his colleagues devised a number of experiments with groups of
people that aimed to show whether the findings from the simulation could
be reproduced in human groups and have found some striking parallels
(Rockloff and Latańe 1996).

Software

Unlike some previous approaches to simulation discussed in this book,
there are no widely available packages for running most cellular automata
models. The exceptions to this are programs constructed to run variations
of the Game of Life, but while the Game of Life has some interest as a
dynamical system, its applications to social simulation are limited. In order
to experiment with cellular automata you need to do some programming.
Fortunately, however, there are now a number of specialized products that
will make this task relatively easy, certainly much easier than using an
ordinary programming language such as Basic or C. In this chapter, we
shall demonstrate how one might construct a cellular automata model with
software called NetLogo, which has been developed for learning how to
program simulations. It includes a comprehensive graphical interface and
a programming language which is easy to learn. It is also available for free
to run on most personal computers (Windows, Macintosh and Unix).

NetLogo can be downloaded from the World Wide Web athttp://

ccl.sesp.northwestern.edu/netlogo/. If you can, it is a good idea to
install NetLogo and follow along with the examples.2 NetLogo is a distant
descendant of the Logo programming language that was created by Seymour
Papert and colleagues in the 1960s as a tool for schoolchildren (Papert 1980;
Resnick 1994). It still retains some aspects of its heritage; for example, there
are ‘turtles’ and they move around on ‘patches’. Its programming language
uses a very simple syntax that is supposed to resemble English. Nevertheless,
the language is powerful and is very well suited to the kinds of simulations
described in this and the following chapters.

NetLogo comes with a detailed tutorial and reference section, accessed
through the Help menu. Here, we shall only provide a brief overview to
show what kind of programs can be created and to help you follow through
the example programs later in the chapter.

2The examples in this book were written using NetLogo version 2.0.2

152 Cellular automata

Getting started

When NetLogo starts, it shows the interface pane, with a large black rectan-
gle that holds the grid of cells (Figure 7.15). There are four tabs along the
top which you use to switch to the corresponding pane:Interface, the one
shown in Figure 7.15,Information, which generally displays an explanation
of the simulation and how it works,Procedures, which holds the program
code, andErrors, which displays error messages.

Figure 7.15: The NetLogo interface window

We start by loading a simulation that is provided as a demonstration
within the NetLogo package. It is called Rumor Mill (Wilensky 1998) and
is an implementation of the Gossip model discussed on page 137. To load
it, choose the Models Library in the File menu, and find Rumor Mill among
the Social science models. When it has loaded, the Interface pane shows
a number of buttons, sliders and graphs (Figure 7.16). Click on the button
labelled ‘setup-one’. The grid will turn blue (blue is the colour of cells that
have not yet heard the rumour) except for one cell in the middle, which is red
to show that it does know the rumour. Now click on the button labelled ‘go’.

Software 153

The red area of cells will gradually expand away from the centre, showing
the rumour spreading to the other cells. The graphs below the grid show that
the number of cells who have heard the rumour first grows at an increasing
rate and then, when most of the cells have heard it, the rate reduces.

Figure 7.16: The Rumour Mill interface

If you now click on the Information tab, there are instructions on what
the other buttons and sliders do and suggestions about various experiments
that you can carry out. The program code is shown on the Procedures pane.
This pane consists of a large scrolling window in which you can edit your
program. Keywords, comments and constants are distinguished from the rest
of the code by their colour, which is applied automatically (red for numbers,
blue for keywords and grey for comments and so on).

The program consists of three main sections. At the top, some variables
are defined. There are setup procedures that are used to initialize the cells.
And there are some procedures used to update the cells at each step, and to
control the graphs and other user interface elements.

In NetLogo, cells are called ‘patches’. The variables used in the simula-
tion are declared thus:

globals [
time ;; how many clock ticks have passed

154 Cellular automata

color-mode ;; 0=normal, 1=when heard, 2=times heard
clique ;; how many patches have heard the rumor

]

patches-own [
times-heard ;; tracks times the rumor has been heard
first-heard ;; clock tick when first heard the rumor
just-heard? ;; tracks whether rumor heard this round

]

Three variables,time, color-mode and clique, are declared to be
‘global’, meaning that they can be accessed from anywhere in the program.
time will store the time in steps since the simulation started,color-mode

changes according to how the cells are to be displayed on the grid, and
clique counts how many cells have heard the rumour. Everything after a ‘;’
on a line is a comment and is ignored by NetLogo. Three further variables
are declared as ‘patches-own’, that is, variables that are owned by each cell.
For example, each cell has its own variable to store the number of times it
has heard the rumour.

Following this, there is a section of code that is executed when the user
click on the ‘setup-one’ or ‘setup-random’ buttons on the Interface pane:

to setup [seed-one?]
ca
set time 0
set color-mode 0
set clique 0
ask patches
[set first-heard -1

set times-heard 0
set just-heard? false
recolor]

ifelse seed-one?
[seed-one]
[seed-random]

update
do-plots

end

to seed-one
;; tell the center patch the rumor
ask patch 0 0

Software 155

[hear-rumor]
end

to seed-random
;; seed with random number of rumor sources
ask patches with [times-heard = 0]

[if (random-float 100.0) < init-clique
[hear-rumor]]

end

The code fromto setup to end is an example of a ‘procedure’, a set
of commands that execute as a unit. Clicking the ‘setup-one’ button calls
thesetup procedure with the variableseed-one? set totrue. ca stands for
‘clear all’ and resets everything to its initial state, thus removing the remains
of any previous run. The three global variables are initialized to zero and
then, using theask command, a set of commands is sent to each cell (patch)
for them to execute. These initialize the patch’s own variables and set the
colour of all the patches to blue (using therecolor procedure, which is
further down the program).

ifelse is Netlogo’s conditional, corresponding to if ... then ... else in
other languages. The condition to be tested is placed immediately after
ifelse (here it is the value of the variableseed-one?, which has been
passed to the procedure when it was called). If the condition is true, the
commands in the first pair of square brackets are executed, and if it is
false, the commands in the second pair. If the user pressed the ‘setup-
one’ button,seed-one? will be true, and so the commandseed-one will
be executed.seed-one is the name of another procedure, defined just a
few lines below.to seed-one asks the patch in the centre of the grid (at
coordinates 0, 0 – the coordinate system is centred on the grid) to hear the
rumour (hear-rumor is another procedure in the program, defined at the
end of the code). To finish the setup, the grid is updated (at this point the
centre cell turns red to show that it has heard the rumour) and the graphs are
initialized.

If you had pressed the ‘setup-random’ button instead of the ‘setup-one’
button, thesetup procedure would have been called withseed-one? set
to false. Theifelse command would have executed theseed-random
procedure instead ofseed-one. seed-random asks all those patches that
have not heard the rumour (i.e. have not already been seeded) to hear the
rumour, if a random number between 0 and 100.0 happens to be less than the
value of the global variableinit-clique. The value of this global variable
is set by the user, using a slider on the Interface panel. The effect is that a

156 Cellular automata

random selection of roughlyinit-clique per cent of the cells are given the
rumour during this initialization.

The third part of the code (below) controls what happens when the user
clicks the ‘go’ button. The button calls thego procedure, which starts by
checking whether all the cells have yet heard the rumour (a translation of the
first command in the procedure could be:if there are no patches which have
heard the rumour zero times, stop). Thetime variable is incremented and
then all the patches that have already heard the rumour are asked to spread
it to their neighbours. Once this has been done, each cell’s state is updated
and the plots that show the number of cells which have heard the rumour are
drawn for this time step. The ‘go’ button calls thego procedure again and
again until the initial stop condition becomes true.

to go
if not any? patches with [times-heard = 0] [stop]
set time (time + 1)
ask patches

[if times-heard > 0
[spread-rumor]]

update
do-plots

end

to spread-rumor ;; patch procedure
locals [neighbor]
ifelse eight-mode?

[set neighbor random-one-of neighbors]
[set neighbor random-one-of neighbors4]

if wrap? or not wrapped-neighbor? neighbor
[set just-heard?-of neighbor true]

end

;; the neighbors and neighbors4 primitives always wrap,
;; so if WRAP? is false we need to reject "neighbors" that
;; are only neighbors because of wrapping
to-report wrapped-neighbor? [neighbor] ;; patch procedure

report (abs (pxcor - pxcor-of neighbor) > 1) or
(abs (pycor - pycor-of neighbor) > 1)

end

to hear-rumor ;; patch procedure
if first-heard = -1

Software 157

[set first-heard time
set just-heard? true]

set times-heard times-heard + 1
recolor

end

to update
ask patches with [just-heard?]

[set just-heard? false
hear-rumor]

end

The spread-rumor procedure starts by declaring a local variable,
neighbor. This variable only exists while the procedure is being executed.
Next, a variable that is set by a switch on the user interface (the one la-
belled ‘eight-mode’) is used to decide whether to set the value of the local
variable,neighbor, to a randomly chosen one of the eight neighbouring
cells (the Moore neighbourhood) or the four cells in the von Neumann
neighbourhood. Finally, the procedure tells the selected neighbour that it
has heard the rumour by setting the neighbour’sjust-heard? variable to
true. There is a complication with this: the NetLogo grid is a torus, with
the left column of cells adjoining the right column. However, a switch on the
interface allows the user to turn this off, so that the edge cells have no neigh-
bours. The condition,if wrap? or not wrapped-neighbor? neighbor

and the following procedure,to-report wrapped-neighbor? handle this.
(A to-report procedure is one that returns a value. Ordinary procedures,
which start withto, do not return anything.)

This cellular automaton works in two phases: first, the rumour is spread
and the just-heard variable of all the receiving cells is set to true
by spread-rumor; then, in the second phase, all cells that have a true
just-heard variable are registered as having heard the rumour (by incre-
mentingtimes-heard). The reason for using this two phase approach is im-
portant in understanding how this program and many other cellular automata
work. Each cell executes its procedures autonomously and at its own speed.
If the program had been written to update the receiving cells immediately
they heard the rumour, they could then in turn spread the rumour to other
cells, but the latter may already have executed all their code and be unable to
receive the rumour. The results would be unpredictable. With the two phase
approach, all the rumour spreading is done before all the rumour hearing.

update is the procedure that handles the second phase, resetting the

158 Cellular automata

just-heard variable and calling thehear-rumor procedure to record that
the cell has received the rumour from a neighbour.

The remaining procedures deal with colouring the cells on the grid
according to whether they have heard the rumour and with controlling the
plotting of the graphs, and we shall not comment in detail on them. Instead,
we shall work through two other examples, showing how one might create
new simulations. The first is for the majority model (see page 139) and the
second, more complicated example replicates the SITSIM model introduced
on page 148.

The majority model

The majority model is a cellular automaton in which each cell’s state copies
the state of the majority of its eight Moore neighbours. The program will
start by randomly setting the cells to either ‘on’, represented by a black cell,
or ‘off’, represented by a white cell. We can do this with the following setup
procedure:

to setup
ask patches [

ifelse random 2 = 0
[off]
[on]

]
set steps 0

end

random 2 generates either a zero or a one, so theifelse condition has an
equal chance of executing either theoff or theon procedure.on andoff are
procedures that will change the state of a cell, which we have yet to write.
The variablesteps will record how many steps the simulation has run. It
needs to be defined as a global variable, accessible to other procedures and
to the user interface (shortly, we shall create a ‘monitor’ for this variable on
the user interface to show how many steps the simulation has run).

globals [
steps
]

Next, we can start coding thego procedure that is activated when the
user clicks on the ‘go’ button. This needs to ask each patch to count how

Software 159

many of its Moore neighbours are ‘on’. As with the previous model, we
shall use a two-phase approach, getting all the cells to record the state of
their neighbourhoods first, and then in the second phase getting the patches
to update their own state. The first phase is easily accomplished if we assume
that each patch will have a variableon? that records its state, either ‘on’ or
‘off’ :

ask patches [
set on-neighbors count neighbors with [on?]

]

For the second phase, each patch needs to see whether there are a
majority of ‘on’ cells surrounding it (more than four of the eight) and if so,
turn itself ‘on’. If there is no majority of ‘on’ cells, there may be a majority
of ‘off’ cells (the number of ‘on’ cells is less than four). In this situation, the
cell must turn itself ‘off’. If there are exactly four ‘on’ and four ‘off’ cells
in the neighbourhood, the cell’s state will remain unchanged. This can be
achieved with:

ask patches [
ifelse on-neighbors > 4

[on]
[if on-neighbors < 4 [off]]

]

Putting these together with a command to increment the step counter, we
get the followinggo procedure:

to go
ask patches [

set on-neighbors count neighbors with [on?]
]
ask patches [

ifelse on-neighbors > 4
[on]
[if on-neighbors < 4 [off]]

]
set steps steps + 1

end

The only coding that remains is to define the procedures to change the
state of a cell,on andoff. These set theon? variable and change the colour

160 Cellular automata

of the patch on the grid (pcolor is a built-in variable that holds the current
colour of the patch):

to on
set on? true
set pcolor black

end

to off
set on? false
set pcolor white

end

The complete program is:

globals [
steps
]

patches-own [
on?
on-neighbors
]

to setup
ask patches [

ifelse random 2 = 0
[off]
[on]

]
set steps 0

end

to go
ask patches [

set on-neighbors count neighbors with [on?]
]
ask patches [

ifelse on-neighbors > 4
[on]
[if on-neighbors < 4 [off]]

]
set steps steps + 1

Software 161

end

to on
set on? true
set pcolor black

end

to off
set on? false
set pcolor white

end

The final step is to design a user interface with a ‘setup’ button, a ‘go’
button and a monitor for the number of steps (see Figures 7.17 and 7.18).

Figure 7.17: The majority model after the ‘setup’ button has been pressed

There are improvements that could be made to this code. First, it runs for
ever, or until the user clicks the ‘go’ button a second time to stop it. It would
be useful to add a test to see whether any cell had changed colour. Second,
we could add code to implement the majority model with random individual

162 Cellular automata

Figure 7.18: The majority model at the end of a run

variation (see Figure 7.10). This would involve changing the second part of
the ‘go’ procedure to:

ask patches [
ifelse on-neighbors > 4

[on]
[ifelse on-neighbors < 4

[off]
[if individualDiff [

ifelse (random 2) = 0
[on]
[off]

]
]

]
]

and adding a switch to set the variableindividualDiff on the user inter-
face. In the initial version, when there are four ‘on’ neighbours, no action was
taken (neither theon-neighbors > 4 nor theon-neighbors < 4 condi-
tions were satisfied). In the new code, when there are four ‘on’ neighbours,

Software 163

the individualDiff variable is tested and if it is true, the patch is set to
‘on’ or ‘off’.

A second example: the SITSIM model

To begin replicating the SITSIM model, we need to write itssetup proce-
dure. First, it is a good idea to clear away any remains of a previous run,
with ca or clear-all. Then we should initialize all the patches, using the
ask-patches command.

Each patch should decide whether it should start as white or black. The
overall proportion of white to black patches will be set by the user with a
slider, which sets the value of a variable that we shall callinitial-white.
The easiest way of getting about the right number of white and black patches
is to use the random number generator to create random numbers in the range
from zero up to 100, and then make the patch white if the random number
is less thaninitial-white. We also need to assign the patch’s ‘Strength’
of opinion, again using a random number generator. Assembling all this, we
get:

to setup
clear-all
ask patches [

ifelse (random 100 < initial-white)
[set pcolor white]
[set pcolor black]

set strength random 100
]

The user will need to see the changing number of white and black cells.
A small procedure would be helpful for this (it is always a good plan to
separate small units of code that do one job into their own procedures):

to countColors
set whites count patches with [pcolor = white]
set blacks count patches with [pcolor = black]

end

This procedure sets the variableswhites andblacks to the number of
patches that are white and black respectively (pcolor is a built-in variable
that holds the current colour of the patch). If we had needed to find the value

164 Cellular automata

of just one variable using this procedure it would have been best to write it
as a reporter, returning the value to the caller, but in this case we need to
return two values: the numbers of whites and blacks. The most convenient
way of doing this is to definewhites andblacks as global variables, so that
they can be accessed from elsewhere in the program. Hence, we need to add
a suitable declaration at the top of the code:

globals [
whites ;; number of white cells
blacks ;; number of black cells
]

One place where these global variables will be useful is in constructing
‘monitors’ on the user interface that will display the current counts.

We also need to note that each patch will have its own variable to record
its strength of opinion:

patches-own [
strength ;; of influence, set to an

;; unchanging random value
]

countColors can now be appended to the setup code, which in its
entirety is:

to setup
clear-all
ask patches [

ifelse (random 100 < initial-white)
[set pcolor white]
[set pcolor black]

set strength random 100
]

countColors
end

The next step is to define thego procedure. This will be called when
the user clicks the ‘go’ button and needs to run one step of the simulation,
asking each patch to see whether the impact on it of others’ opinions is such
as to make it change its own opinion. So we need anotherask patches

command:

Software 165

to go
ask patches [beInfluenced]
countColors

end

Once the patches have been influenced, we shall see how many whites and
blacks there are, usingcountColors again.

The user’s ‘go’ button will keep calling thego procedure again and again
indefinitely. To ensure that eventually the program stops when the cells are
no longer changing, we shall add a test. We set a variable,changed?, to false
before asking the patches to run thebeInfluenced procedure, and arrange
that if any patch changes its colour, it setschanged? to true. Then, after all
the patches have finished, we will test thechanged? variable and stop if it is
still false. Thego procedure becomes:

to go
;; assume that no cell will change its colour
set changed? false
ask patches [beInfluenced]
countColors
;; stop if no cell has changed its colour
if (not changed?) [stop]

end

We must also remember to declare thatchanged? is a global variable
since it will be accessed by the patches’ code when they are changing colour.

globals [
changed? ;; has any cell changed its colour?
]

Next, we need to write thebeInfluenced procedure. The SITSIM
model is an example of a cellular automata in which all other cells influence
the state of each cell. A patch’s colour changes if the total impact from
‘opposing’ cells is greater than the impact from ‘supporting’ cells. So a first
sketch ofbeInfluenced would be:

to beInfluenced
set impactFromWhite sqrt sum values-from patches

with [pcolor = white] [impact myself]
set impactFromBlack sqrt sum values-from patches

with [pcolor = black] [impact myself]

166 Cellular automata

;; if this cell is white and the impact from blacks is
;; greater than that from whites, change the cell
;; colour to black, and vice versa for black cells
if pcolor = white and impactFromBlack > impactFromWhite

[set pcolor black
set changed? true]

if pcolor = black and impactFromWhite > impactFromBlack
[set pcolor white
set changed? true]

end

The first two lines sum the impacts of the patches that are white and black
respectively.impact is a reporter procedure that we have yet to write; this
will work out the impact of a patch on the patch being influenced (‘myself’).
The first line could be translated as: set the variableimpactFromWhite to
the square root of the sum of the impact of a patch on myself for all patches
whose colour is white. Once we have these total impacts, we can see whether
this patch’s colour is to change. This is the purpose of the last six lines.
Notice that if the colour does change, we also set thechanged? variable to
true, to ensure that the simulation will run for at least one more cycle.

To complete this procedure, we need to declare that the variables,
impactFromWhite andimpactFromBlack, are local variables. They should
be local because they are specific to this patch and used only in this proce-
dure. To do this, the line

locals [impactFromWhite impactFromBlack]

must be added at the beginning of the procedure.
We have yet to work out what the impact of one patch on another is. The

formula (page 149) says that the impact is equal to the square of the other
patch’s strength divided by the square of the distance between this and the
other patch. We can write this as a simple reporter procedure:

to-report impact [otherCell]
;; report the impact of otherCell on myself
report square (strength / (square distance otherCell))

end

distance calculates the straight-line or Euclidian distance between the
patch and another patch. The procedure to find the square of a number is
simple:

Software 167

Figure 7.19: The SITSIM model after the ‘setup’ button has been pressed

Figure 7.20: The SITSIM model at the end of a run

168 Cellular automata

to-report square [x]
report x * x

end

There are a couple of complications that need to be considered. First,
the procedure will fail whenotherCell happens to be identical to the patch
that is executing the procedure, because in this case, the distance will be
zero, and so the procedure would be trying to dividestrength by zero. The
SITSIM model tells us that in this case the distance to be used is the ‘self-
distance’, a parameter that the user can set using a slider. Second, it would
be interesting to allow the user to change the power to which the distance is
raised with another slider (thus varying the effective range of the influence
of other patches). For this, we can use the^ operator, which means ‘raise to
the power of’.

to-report impact [otherCell]
;; report the impact of otherCell on myself
locals [d]
ifelse (self = otherCell)

[set d self-distance]
[set d distance otherCell]

report square (strength / d ^ exponent)))
end

That completes the code for this model. In addition, we need to add some
buttons and sliders for the user interface. The resulting model is shown in
Figures 7.19 and 7.20.

Commentary

The examples have shown that, using a package like NetLogo, it is not
difficult to program simple cellular automata to achieve clear and visually
impressive patterns. While we have room in this book to show only fairly
small programs, NetLogo will accommodate much larger and more complex
ones. Its main drawback is slow speed: a cellular automata for a grid of
100 × 100 cells will involve 10,000 evaluations of the cells’ states for
every step of the simulation and even with today’s fast computers, this can
take some significant time. Compared with some other systems, NetLogo
is relatively slow because it is based on an interpreted language. The same
program in C or C++ would probably run an order of magnitude faster, but

Further reading 169

would take two orders of magnitude longer to write and would be much
harder to debug. The ultimate in speed-ups can be obtained using parallel
hardware (see, for example, the description of the hardware designed by
Toffoli and Margolus 1987).

All the models we have seen in this chapter have been very abstract.
Obviously, the majority model does not represent all that can be said about
the spread of political opinion, for example. Nevertheless, even these very
abstract models do have some value. The majority model, for instance,
showed graphically the importance of individual variation not just on the
distribution of individual characteristics, but also on the ‘shape’ of wider
patterns, a point that is hard to make convincingly in other ways. However,
the tendency in recent work has been to create increasingly more complex
models, in which the rules driving the cells are a lot more complicated than
the ones we have seen in this chapter.

One topic area that has taken forward the cellular automata approach
with promising results is the investigation of the dynamics of political opin-
ion change. For example, Deffuantet al. (2003) study a model similar in
many respects to the majority model, but give the cells the possibility of
having an opinion on a continuous scale, not just ‘black’ or ‘white’. They
also introduce the idea of ‘uncertainty’: some people may be convinced that
they are correct, whereas others may be rather uncertain about their opinions.
They investigate the effect of giving some cells very positive or negative
opinions with low uncertainty, in order to model political extremists. They
then study the circumstances in which the extremists are influential, either
persuading the whole of the population to move to one extreme, or dividing
the population into two roughly equal, opposed camps.

While these models use more complicated rules than the models covered
in this chapter, the basic structure is the same: a spatial grid of cells each
of which interacts with its neighbours. A different strand of work has gen-
eralized cellular automata in another direction, freeing the actors from their
cells and giving them the possibility of being autonomous and goal-directed.
These models are best classified as multi-agent models, the subject of the
next chapter.

Further reading

The best general introductions to the use of cellular automata in the social
sciences are

170 Cellular automata

• Hegselmann, R. (1996) Cellular automata in the social sciences: per-
spectives, restrictions and artefacts. In R. Hegselmannet al. (eds),
Modelling and Simulation in the Social Sciences from the Philosophy
of Science Point of View, pp. 209–234. Kluwer, Dordrecht.
• Hegselmann, R. (1996) Understanding social dynamics: the cellular

automata approach. In K. G. Troitzschet al. (eds),Social Science
Microsimulation, pp. 282-306. Springer-Verlag, Berlin.

A book which develops the ideas in this chapter and provides examples
and programs for using cellular automata in the social sciences is

• Gaylord, R. J. and D’Andria, L. J. (1998)Simulating Society: A
Mathematica Toolkit for Modelling Socioeconomic Behavior. TELOS
Springer-Verlag, Berlin.

Wolfram was one of the pioneers of cellular automata and has recently
published a work of monumental size and ambition which argues that cellu-
lar automata are fundamental to understanding the universe.

• Wolfram, S. (2002)A New Kind of Science. Wolfram Media, Cham-
paign, IL.

Another work of similar size is

• Ilachinski, A. (2001)Cellular Automata. A Discrete Universe. World
Scientific, Singapore, New Jersey, London, Hong Kong

which is a textbook for everyone who is interested in cellular automata. It
deals with almost all possible features and applications of cellular automata
from physics to artificial life (in Chapter 11, pp. 557–602) and also mentions
‘mobile CAs’ – those for modelling migration processes.

Another more technical, but much older discussion of attempts to un-
derstand CA models analytically, with a complete description of Wolfram’s
notation for classifying one-dimensional rules, is

• Wolfram, S. (ed.) (1986)Theory and Applications of Cellular Au-
tomata. World Scientific, Singapore.

An accessible introduction to cellular automata in science in general and
a description of special hardware built to run cellular automata very quickly
may be found in

• Toffoli, T. and Margolus, N. (1987)Cellular Automata Machines. MIT
Press, Cambridge, MA.

One of the first collections of papers on cellular automata was

Further reading 171

• Farmer, D.et al. (eds) (1984)Cellular Automata: Proceedings of an
Interdisciplinary Workshop.Los Alamos, New Mexico, 7–11 March,
1983. North Holland, Amsterdam.

Chapter 8

Multi-agent models

In the previous chapter we saw how to build simulations in which very
simple automata interacted on a grid so that patterns of behaviour at the
global scale emerged. In this chapter we explore how one might develop
automata for social simulation which are somewhat more complex in their
internal processing and consequently in their behaviour. Such automata are
conventionally calledagents, and there is now a growing literature on how
they can be designed, built and used.

While there is no generally agreed definition of what an ‘agent’ is, the
term is usually used to describe self-contained programs that can control
their own actions based on their perceptions of their operating environment
(Huhns and Singh 1998). Agent programming is rapidly becoming important
outside the field of social simulation. For example, agents have been built
to watch out for information as it becomes available over the Internet,
informing the user if it finds relevant sources (Maes 1994). The agent is
instructed about the topics thought to be interesting and it then continuously
monitors known sources for items fitting this profile. Other agents have been
built to help with electronic network management, business workflow and to
guide people to use software more effectively (the agent monitors keystrokes
and mouse movements and provides suggestions for faster ways of doing
tasks).

The aim of agent design is to create programs that interact ‘intelligently’
with their environment. Agent software has been much influenced by work
in artificial intelligence (AI), especially a subfield of AI called distributed
artificial intelligence (DAI) (Bond and Gasser 1988; Chaib-draaet al.1992).

Agents and agency 173

DAI is concerned with the properties of and the design of networks of
interacting agents – for example, how one might design a group of agents,
each with different expertise, to cooperate to solve a problem. Because of
DAI’s interest in building networks of ‘intelligent’ agents and investigating
their properties, there is much in this field relevant to social simulation. At
the same time, those interested in DAI are increasingly influenced by ideas
from the social sciences (Conteet al. 1997). This chapter reviews some of
the basic ideas of DAI and explains how models involving many agents (so-
called multi-agent models) can be used for the simulation of societies. We
start with a brief description of the characteristics of agents and how these
are typically implemented, before examining some of the research which has
used agents. The later sections of the chapter describes a very simple multi-
agent model built using NetLogo and a rather more complex model about
crowd behaviour.

Agents and agency

Applied to people, the concept of agency is usually used to convey the
purposive nature of human activity. It is thus related to concepts such as
intentionality, free will, and the power to achieve one’s goals. When applied
to agents as computer programs, the scope of agency is generally rather
weaker. Wooldridge and Jennings (1995) note that computer agents typically
have the following properties:

• autonomy– agents operate without others having direct control of their
actions and internal state;
• social ability– agents interact with other agents through some kind of

‘language’ (a computer language, rather than natural language);
• reactivity– agents are able to perceive their environment (which may

be the physical world, a virtual world of electronic networks, or a
simulated world including other agents) and respond to it;
• proactivity– as well as reacting to their environment, agents are also

able to take the initiative, engaging in goal-directed behaviour.

In addition, agents are often attributed a degree of intentionality. That is,
their behaviour is interpreted in terms of a metaphorical vocabulary of belief,
desires, motives, and even emotions, concepts that are more usually applied
to people rather than to computer programs. For example, we might say that
an agent built to collect relevant items from a supply of news articles was
‘trying’ to find something appropriate for the user, ‘wanted’ to get the most

174 Multi-agent models

relevant article, and ‘believed’ that articles on a related topic would also be
interesting. The habit of attributing intentionality to software agents in this
way is liable to cause a great deal of philosophical confusion to the unwary
(Shoham 1990). For our purposes, it is only necessary to view the ascription
of intentionality to agents as a matter of modelling: a computer agent does
not have intentionality, but is constructed to simulate some (much simplified)
aspects of human intentions.

With this in mind, we can now list some of the attributes that we may
want to model with agents.

Knowledge and belief

Agents will need to base their actions on what they know about their envi-
ronment (including other agents). Some of the information they have may
be incorrect, as a result of faulty perception, faulty inference or incomplete
knowledge. We call such possibly erroneous information the agents’beliefs
to distinguish them from true knowledge.

Inference

Given a set of beliefs, agents may be able to infer further information from
them. For example, believing that agent B has recently ‘eaten’ some ‘food’,
agent A could infer that the place to find food is near where agent B was
located. Of course, this inference may be wrong (perhaps agent B consumed
all the food).

Social models

Some agents may be capable of learning about the interrelationships between
other agents in their world – for example, that agent A has recently interacted
with agent B. On the basis of such snippets of data, agents may be able
to put together a picture of the social relationships in their environment –
that is, a ‘social model’. Agents may also have models of other aspects of
their world, for example, they may develop a model of the ‘geography’ of
their environment. Note that these agents’ models are quite different from
the simulation model that the researcher builds; agent models are built by
the agents themselves while the simulation runs.

Agents and agency 175

Knowledge representation

In order to construct its models, an agent needs some way to represent its
beliefs. Techniques for doing this have been studied by AI researchers under
the heading of ‘knowledge representation’. One generally useful approach is
to use predicate logic to store declarative statements, such as ‘There is food
at location 143’, and formulae such as ‘If an agent is eating at locationX,
there is food at locationX ’, whereX is a variable to be filled in depending on
what the agent ‘sees’ around it. Another approach, which can be used alone
or in conjunction with logic, is based on semantic networks in which objects
and their attributes are related together, often as a hierarchy. For example, an
agent may know that all sources of food yield energy, and also know about
several specific kinds of food, each with different energy levels and different
means of extracting that energy. These facts would be related in a tree-like
structure, with the most general facts about food at its root and more specific
facts about different types of food at its branches.

Goals

Since agents are built to be autonomous and purposive, if they are to engage
in action they need to be driven by a need to satisfy some internal goal
such as survival. Surviving may in turn require the satisfaction of subsidiary
goals, such as acquiring energy and avoiding lethal dangers. The problem
for the designer is how to get agents to define their own subgoals relevant
to the situation at hand. There can also be difficulties in deciding how to
manage several goals which may be of differing importance and relevance
and which may possibly conflict. The solution to these problems is often the
responsibility of a ‘planner’ module built into the agent.

Planning

An agent needs to have some way of determining what behaviour is likely
to lead to the satisfaction of its goals. This may be very straightforward:
an agent may be programmed to move away if it finds itself adjacent to a
stronger and aggressive attacker, for example. Such simple condition–action
rules, taking the form ‘if you find yourself in this state, then do that’, can be
very powerful when several are used in combination (see, for example, the
discussions in Steels and Brooks 1995), but often it is desirable for agents

176 Multi-agent models

to do some more complex planning. Planning involves working backwards
from a desired goal state, inferring what action would lead to that goal,
what state would be required before that action can be carried out, what
action is needed to arrive at that state, and so on, until one gets back to the
current situation of the agent. The process is rather similar to working out
a travel itinerary when one knows where one needs to be at some future
time, but there are a number of possible routes, some good, some bad, to
get there. AI researchers have built some very sophisticated planners, but
it has been argued that the kind of planning they perform is not a realistic
model of human planning and, indeed, that most human action is driven by
routine reaction to the particularities of a situation rather than by elaborately
calculated plans (Agre and Chapman 1987; Suchman 1987; Brooks 1990).

Language

All multi-agent models include some form of interaction between agents,
or, at a minimum, between individual agents and the environment in which
they exist. The interaction might involve the passing of information from one
agent to another, the negotiation of contracts (Smith and Davis 1981), or even
one agent threatening another with ‘death’ (compare, for example, the com-
munication between political agents in Axelrod’s simulation described in the
previous chapter). In some models the interaction may convey only factual or
non-intentional meaning. A good example is found in Drogoul’s multi-agent
model of ants’ nests (described in more detail below) where simulated ants
emit ‘stimuli’ into the environment as a side-effect of their activities. These
stimuli spread out from the emitting ant according to an inverse square law of
intensity and are detected by other ants, whose behaviour is thereby affected.
Although the ants interact with each other by this means, the stimuli are not
spread with any intention of conveying meaning.

In contrast, people speak with the intention of communicating with other
people (apart from some special cases such as involuntary exclamations).
Such communications need to be modelled by specifying a ‘language’ for
communication. There have been some attempts to develop specialized com-
puter languages for communciation between agents (the best-known exam-
ple is KQML; Mayfieldet al. 1996), but these have been designed for their
conciseness, simplicity, ease of implementation and similar characteristics
rather than as simulations of social interaction. While there is a considerable
literature on the topic (Gazdar and Mellish 1989; Hurfordet al. 1998a;
Cangelosi and Parisi 2001), modelling human language remains an area of

Agents and agency 177

considerable difficulty and debate. Much of the literature assumes as given
what is in fact problematic – for example, that agents start with a common
language and that there is perfect correspondence between the words in an
agent’s vocabulary and their reference in the world – but see the description
of Hutchins and Hazlehurst (1995) in Chapter 10. One way of avoiding some
of these difficulties is to assume that messages pass directly between agents,
‘brain to brain’. Depending on the object of the simulation, this may or may
not be a permissible simplification.

Emotions

Although people have emotions such as happiness, sadness, grief and anger,
there has been little research within AI on how these can best be modelled
and there are still some basic questions about emotions that remain to be
clarified (Oatley 1992). Unresolved issues include whether emotional states
are entities or are emergent features of other cognitive and subconscious
states, and the relationship between emotions and goals. For example, if one
succeeds in achieving a goal, does that cause happiness, or is happiness a
goal in its own right?

One school of thought views emotions as a form of control signalling:
for example, if you are sad because you have not succeeded in reaching a
goal, the sadness impels you to look for a change in your goals so as to
become happier. The emotional state motivates a change in goal (Ortony
et al. 1988). An alternative theory sees emotions as essentially epiphenom-
enal, happiness being an indication to oneself that one has had success in
managing within one’s environment, and sadness the realization that one’s
plans are not working out (Wright 1996). None of these theories emphasizes
the social consequences of emotion, such as the expectation that those who
hold certain social roles will engage in ‘emotional labour’ by providing
solace, encouragement and so on (Hochschild 1983).

This brief survey of those characteristics of autonomous agents that we
might want to model has shown that there remain many significant unsolved
problems and that it would be unrealistic to expect multi-agent models to be
able to simulate the great majority of human psychological and social phe-
nomena to any level of detail. As with other forms of simulation discussed in
this book, we should aim to extract the features of the target that are of most
theoretical significance and concentrate on modelling those, disregarding the
many features which are fundamental aspects of humans but which are not
central to the matter under investigation.

178 Multi-agent models

Agent architecture

The traditional AI approach to building agents with cognitive abilities is
known as the symbolic paradigm. This is based on the ‘physical-symbol
system hypothesis’ (Newell and Simon 1976), which asserts that a system
that manipulates symbols according to symbolically coded sets of instruc-
tions is capable of generating intelligent action. Thus traditional AI involves
building programs which work with symbols. For example, an agent might
receive the symbol ‘Hallo’ as a message from another agent, and respond
appropriately. In this case, the agent would need to recognize the in-coming
symbol and be able to generate the reply, probably by using pattern matching
and a rule which states that a response along the lines of ‘Can I help you?’
is to be sent whenever a ‘Hallo’ is received.

However, the symbolic paradigm has generated a host of difficult prob-
lems which look insoluble in general, although they may be avoided or
minimized in specific applications. These problems can be summarized as:
fragility (a system may work well in specific context, but it may not cope
successfully with even minor variations); complexity (some problems, such
as the planning task mentioned above, require algorithms of considerable
complexity); and difficulty in solving some problems that people seem to
manage easily (such as representing ‘commonsense’ knowledge). A variety
of techniques and algorithms have been developed over the 50 years since
the birth of AI to overcome these difficulties. The ones that are important for
multi-agent simulation are production systems, object orientation, language
parsing and generation, and machine learning techniques. The first two of
these will be reviewed in this section. An introduction to computational
linguistics and the understanding and production of ‘natural’ languages
can be found in Jurafsky and Martin (2000). Learning will be considered
further in the next chapter, where we will review a variety of approaches
to learning and evolution, including the use of methods that break away
from the physical-system hypothesis in favour of non-symbolic approaches
to machine intelligence.

Production systems

Most agents in multi-agent models are built using some kind of rule system,
of which the simplest is a ‘production system’. A production system has
three components: a set of rules, a working memory and a rule interpreter.
The rules each consist of two parts: a condition part, which specifies when

Agent architecture 179

the rule is to fire; and an action part, which states what is to happen when the
rule fires. For example, a robot agent might include the rule ‘if (a) your arm
is raised and (b) the goal is to pick up an object and (c) an object is on the
table, then lower your arm’. This would be one of perhaps hundreds of such
rules. Whether the condition part of a rule is in fact satisfied at any moment
is determined by looking in the agent’s working memory which stores facts
such as the location of the arm, the robot’s current goal and its knowledge
of the state of the environment. The job of the rule interpreter is to consider
each rule in turn, check whether the conditions of the rule are met and then,
if necessary, carry out the action.

The main advantage of a production system is that the designer does not
have to decide beforehand in which order the rules are to fire. In contrast
with the more determined order of execution one gets with an ordinary
program or a flow chart, the agent can to some extent react appropriately to
the situation it finds itself in. Which rules fire and when they do so depends
on the contents of working memory and thus on the past experiences of the
agent and the state of its environment.

The designer needs to decide what the interpreter should do when the
condition parts of more than one rule are satisfied. The possibilities are: to
fire just the first rule whose condition is satisfied; to fire all the rules that
can be fired; or to use some other ‘conflict resolution’ procedure to choose
which to fire. The last is particularly important if the rulebase includes rules
specific to particular situations and also more general rules that apply to
many situations, including those covered by the more specific rules. For
example, in addition to the rule about lowering the arm to pick up an object,
there might be a more specific rule to cover the situation when the object to
be picked up is taller than the robot and the arm is therefore to be raised, not
lowered. In these circumstances, we would want to fire the specific rule, but
not the general rule, although the condition parts of both are met.

When a rule has been fired by carrying out its action part, the rule
interpreter cycles round and looks again at all the rules to find which to fire
next. The action that the agent carried out might have changed the contents of
its memory, so the rules which fire on the second cycle may not be the same
as the ones which fired first time round. For example, the robot might have
lowered its arm because the rule cited above fired. If the agent’s memory now
records that the arm is in the lowered position, one of the conditions of that
rule will no longer be satisfied, but some other rule including the condition
‘the arm is in a lowered position’ may be able to fire. It is usual for rules
to specify actions that either directly affect the agent’s memory or affect the
environment in a way which the agent can perceive. If a rule does not have

180 Multi-agent models

either of these consequences, it will be fired on every cycle until the effect
of some other rule makes its condition part no longer true.

Object orientation

A natural way of programming agents is to use an ‘object-oriented’ pro-
gramming language. In this context, ‘objects’ are program structures that
hold both data and procedures for operating on those data. In object-oriented
programming, the data are stored in ‘slots’ within the object and the proce-
dures are called ‘methods’. In most object-oriented languages, objects are
created from templates called ‘classes’ that specify the composition of the
object, the data it can hold and the methods it uses. All the objects derived
from the same class are similar in terms of the methods and slots they
possess, although the data values of different objects may differ. The classes
themselves are arranged in a hierarchy, with subordinate classes inheriting
the methods and slots of superior classes but adding additional ones or
replacing some of the superior’s slots and methods with more specialized
substitutes. For example, consider a simulation of pedestrian flow through a
shopping precinct (cf. Molńar 1996). There may be a class representing the
structure and procedures of a simulated pedestrian. The class would define
slots in which to store, for instance, the location of the pedestrian agent and
its current direction, and a method that specifies how to walk, as well as
several others. This basic agent class might have two subclasses, one for
pedestrians walking alone, and one for pedestrians who are part of a group.
Both would inherit the slots describing location and direction from the basic
pedestrian class, but the latter would add a further slot to the structure to
store a list of the other pedestrians in its group. The class for group members
would also specialize the general method for walking to take into account
the motion of the other group members – for example, to reduce the walking
speed if the agent is moving too far ahead of the rest.

Once a set of classes has been defined, individual agents are generated by
creating instances from them (‘instantiation’). The advantage of the object-
oriented approach is that the slots can represent the internal states of the
agent (including its working memory and the rules, if it has been designed as
a production system), while the methods can implement the rule interpreter.
By specifying the rules at the class level, all agents instantiated from that
class can share the same rules, while the contents of their memories can
differ between agents. In addition, the object-oriented approach leads natu-
rally to a useful encapsulation, with each agent clearly distinguishable within

Agent architecture 181

the program. The fit between object orientation and multi-agent modelling
is so close that nearly all multi-agent simulations are written using object-
oriented programming languages. Examples of such languages are C++
(Stroustrup 1993), Objective C (NeXT Corporation 1993), Lisp (Graham
1996), Smalltalk (Goldberg 1989) and Java (Arnold and Gosling 1998).

Modelling the environment

In all multi-agent simulations, the agents are located in an environment.
What constitutes an environment depends on what is being modelled, but
if the agents are individual people, rather than organizations, one of the
main functions of the environment will be to provide a spatial context.
Each agent will be located in a simulated space, in much the same way
as cellular automata are located on a grid. In many models, the agents are
able to move around the environment. Although such a spatial world is the
most common environment, others are possible. For instance, the agents may
move through a network of nodes and links (this might be useful if, for
instance, the simulation was concerned with markets and trading, with the
network modelling trading links).

Once agents are positioned within an environment, they will need ‘sen-
sors’ to perceive their local neighbourhood and some means with which to
affect the environment. Usually, communication between agents is routed
through the environment, which forwards messages on to the appropriate
recipient. In this case, agents will also need to be able to ‘hear’ messages
coming from the environment and to send messages to the environment for
onward transmission.

The designer will also need to decide about the order in which the agents
in the simulation are given computing time. Ideally, all agents ought to
operate in parallel. However, because most simulations run on sequential
rather than parallel computers, the desired parallel operation must itself be
simulated, usually by running the program code for each agent in a round
robin fashion, or by choosing the next agent to run at random. Unfortunately,
the order in which agents are run can have a major effect on the course of
the simulation unless suitable precautions are taken. For example, if agent
A sends a message to agent B, but B is run before A, agent B will not
get the message from A until the next round, by which time the message
may no longer be relevant. Computer scientists have investigated such prob-
lems under the heading of ‘concurrency’ and there are a number of well-
understood, although complicated techniques for dealing with them (Fisher

182 Multi-agent models

and Wooldridge 1995). However, the relatively simple solution of buffering
messages within the environment is often all that is needed. During each time
step, messages from agents are collected and stored in the environment. At
the beginning of the next time step, all the stored messages are delivered to
their recipients. Alternatively, some of the ideas of discrete event modelling
(see Chapter 5) can be used to order events explicitly.

Building multi-agent simulations

In this section, we shall explain the form of a multi-agent simulation at a
practical, implementation level, by developing a small demonstration pro-
gram written in NetLogo (for a brief introduction to NetLogo, see Chapter
7). This will show the basic elements of a multi-agent simulation in only a
few pages of code.

NetLogo is a good medium for building multi-agent models because it is
object-oriented (the ‘turtles’ are objects in this sense), because the turtles can
easily be programmed to have ‘autonomy’ (in the limited sense mentioned
at the beginning of this chapter) and because it provides a good range of
graphical methods of entering parameter input and displaying outputs.

We start with a toy model in which there are agents that each have a
shopping list, and a number of shops, each of which sells a product that might
be bought by the agents. The agent shoppers have to go to all the shops that
sell the products they want, and buy what is on their shopping list, but first
they have to find these shops. In the first and simplest version of the model,
the agents stumble blindly around trying to find the shops. We shall then
make the agents more complicated, observing the effect of their additional
‘intelligence’ on how long it takes for them to complete their shopping trips.

The model involves two kinds or classes of objects: the agents themselves
and the shops. NetLogo allows one to specify different classes of object as
‘breeds’ (think of breeds of turtle or dog). So we shall have anagents

breed and ashops breed. Each has its own slots to hold the data that the
object needs to keep. In this model, each agent needs to know what is still
to be bought on its shopping list (if the list becomes empty, the agent has
completed its shopping) and each shop needs to know which product it sells.
The following NetLogo commands establish these breeds.

breeds [agents shops]
agents-own [shopping-list memory]
shops-own [product]
globals [tick products junk]

Building multi-agent simulations 183

The globalstatement defines two variables that can be accessed by any
object. They will store the simulated time (tick) and the complete set of
all products available in this artificial world (products), both of these being
attributes of the model’s environment.

As usual, we define asetup procedure to initialize the objects, invoked
from the interface by the user when he or she presses theSetup button.
For our model, we need to create some agents, place them randomly on
the NetLogo world, and give each of them a shopping list of products to
buy. The ten agents look like small stick men on the display (a ‘person’
shape) – see Figure 8.1. Each shopping list is constructed by creating a list
(with n-values of ten randomly selected products (some of which may
be duplicates) from the list of all products previously stored in the global
variable,products.

Figure 8.1: The shoppers’ world

The 12 shops, one per product, are represented as black squares, each
selling a different product (for simplicity, each shop only sells one product)
and are also distributed around the display at random.

At the end of thesetup procedure, there are ten agents, each with a
shopping list of ten products to buy, and 12 shops, one for each of the 12

184 Multi-agent models

available products. All these are randomly scattered over the landscape.

to setup
locals [product-number]
clear-all

; background: make all the patches white
ask patches [set pcolor white]

; products
set products ["beans" "chocolate" "soap" "bread"

"toothpaste" "milk" "apples" "cake" "oranges"
"butter" " peas" "beer"]

; shoppers
set-default-shape agents "person"
create-custom-agents 10 [

; locate the agent at a random position
setxy (random screen-size-x) - screen-edge-x

(random screen-size-y) - screen-edge-y
; set the colour etc. of the shape on the screen
set color pink set heading 0 set size 3
; give it a list of products to buy
set shopping-list n-values 10

[item (random (length products)) products]
set memory []
]

; shops
set-default-shape shops "box"
set product-number 0
create-custom-shops 12 [

setxy (random screen-size-x) - screen-edge-x
(random screen-size-y) - screen-edge-y

set color black set heading 0 set size 2
set product item product-number products
set product-number product-number + 1
]

Figure 8.1 shows what the simulation looks like at the start, after the
Setup button has been pressed.

When the objects have been initialized, the user can press theGo button,
which repeatedly calls thego procedure:

Building multi-agent simulations 185

to go
ask agents [act]
if count agents with [not empty? shopping-list] = 0

[stop]
set tick tick + 1

end

to act
if not empty? shopping-list [shop]

end

The go procedure asks each agent to act, that is, to search for a shop,
and then checks to see whether the simulation should finish because all the
shoppers have bought everything on their lists.tick counts the number of
rounds of simulation, so that we can see how long it takes for all the agents
to complete their task.

to shop
if any? shops-here [buy-if-needed]
move-randomly

end

to buy-if-needed
locals [shop-to-buy-from]
set shop-to-buy-from random-one-of shops-here
if member? product-of shop-to-buy-from shopping-list [

set shopping-list remove product-of shop-to-buy-from
shopping-list

]
end

For agents, acting means shopping, provided that there are items still
needing to be bought. And for these simple agents, shopping consists of
seeing whether there are any shops in the same patch as their current loca-
tion, and if so, buying from one of them, and then making a random move.
shops-here reports the shops on the same patch as the agent. There may
be more than one shop on that patch, so they randomly choose one of them.
Then the agent looks to see whether the product sold by that shop is on its
shopping list, and if so, the agent removes the product from its shopping list
(it has ‘bought’ it).

186 Multi-agent models

to move-randomly
set heading (random 360)
move

end

to move
forward 1

end

Moving randomly consists of setting the agent’sheading (i.e. the direc-
tion in which it will move) to a random angle and then moving one unit in
what is now the forward direction. The result is that the agents engage in
what is often called a ‘random walk’ over the grid. While they are likely to
bump into all the shops eventually, it may take many ticks for them all to
visit all the shops they need to empty their shopping lists.

Because of the random nature of the agents’ moves, the time taken for
the simulation to complete will vary, but running it a hundred times gives an
averagetick value of 14,310 (standard deviation 4150) at the end of a run,
when all the agents have bought all they need. The agents are very inefficient
at finding the shops they want because they are so stupid.

As the next stage in the development of the model, let us add the ability
for the agents to perceive their environment. They will ‘see’ any shops that
are in their Moore neighbourhood and head towards one of them if there are
no shops in their current patch.

Most of the code remains unchanged, but the following modifications
and additions are needed:

to shop
locals [closest-shop-i-know]
remember products-on-sale-around-here
if any? shops-here [buy-if-needed]
set closest-shop-i-know scan-memory
ifelse closest-shop-i-know != "None"

[move-towards closest-shop-i-know]
[move-randomly]

end

to-report products-on-sale-around-here
report values-from (shops-on neighbors) [(list product xcor ycor)]

end

to remember [shop-locations]

Building multi-agent simulations 187

set memory remove-duplicates sentence memory shop-locations
end

Theshop procedure becomes more complicated because the agent has to
look around to see which shops are nearby and then has to remember what
it sees. When moving, it first searches its memory for the closest shop to its
current location and then heads in that direction.

The agent needs to remember three things about the shops that
it sees: the product the shop sells, the x-coordinate of the shop’s
location, and the y-coordinate of the location. So, the procedure
products-on-sale-around-here is designed to return a list of those three
things for each shop that is on any of the patches which are neighbours
of the patch the agent is on (shops-on neighbors). To remember these
data involves appending the new shop locations to the existing ones held in
memory (the curiously namedsentence procedure joins two lists together)
and discarding any duplicates, in case the same shop is seen twice.

Then, when the agent wants to move, instead of moving randomly, it
will scan its memory to find the location of a shop it already knows about.
The scan of its memory is done in two stages. First, the memory records are
filtered to extract only those that relate to shops selling products that are on
the agent’s shopping-list. If there are no known shops that sell products that
the agent wants, the procedure returns “None” (see the code fragment below).
Otherwise, the agent sorts the records about shop locations according to the
distance between it and each shop, and returns the first record in the sorted
list, the one for the shop that is nearest the agent.

to-report scan-memory
locals [shops-to-visit]
set shops-to-visit
filter [member? (first ?) shopping-list] memory

ifelse empty? shops-to-visit [report "None"]
[report first (sort-by [

distancexy (last butlast ?1) (last ?1) <
distancexy (last butlast ?2) (last ?2)

] shops-to-visit)]
end

In these procedures, the memory record about each shop is held as a three
part list. The first element in the list is the name of the product, the second the
x-coordinate of the shop, and the third is the y-coordinate. These elements
can be retrieved using the NetLogo procedures,first (which returns the

188 Multi-agent models

first item in a list, in this case the product),last (which returns the last
item in the list, the y-coordinate) andbutlast, which returns the whole list
except the last element. Thus thelast butlast of a list returns the second
but last item. The other unfamiliar symbols in the code above are ?1 and ?2.
The sorting procedure,sort-by, does a comparison of each element in the
list to be sorted with every other item, to see in what order they should be
placed in the sorted list. The comparisons are done two elements at a time
by the expression inside square brackets, substituting the one element for?1

and the other for?2. For example,

distancexy (last butlast ?1) (last ?1) <
distancexy (last butlast ?2) (last ?2)

compares the distance between the agent and the spot defined by the x
and y coordinates extracted from one memory record ((last butlast ?1)

(last ?1)) with the distance between the agent and the spot defined by
another record ((last butlast ?2) (last ?2)).

to move-towards [shop-location]
if not (xcor = (last butlast shop-location) and

ycor = (last shop-location))
[set heading towardsxy

(last butlast shop-location)
(last shop-location)

move]
end

When a memory record has been selected and returned to theshop

procedure, the agent then moves towards the location of that shop using
move-towards. This procedure (above) checks that the agent is not coin-
cidentally already where it wants to be. If it is, it doesn’t need to move. If
not, it sets its heading towards the shop’s location and moves one unit in that
direction.

We assumed that giving the agents the ability to memorize the locations
of the shops that they had moved past would speed up their shopping. Is
this true? Testing the augmented code by averaging 100 runs shows that it
does: the average number of ticks before all the agents have completed their
shopping drops from about 14,000 to 6983 (standard deviation: 2007) or to
about half.

The agents are now slightly less stupid than the randomly moving ones
we started with. While they are obviously very simple, they now do have the
ability to perceive their environment and react to it. They do not, however,

Building multi-agent simulations 189

have any perception of other agents; each operates individually and without
regard for the others. Let us continue the development of this model by
allowing the agents to exchange information about the shops that they have
previously encountered.

These more advanced agents have the additional ability to ‘talk’ to other
agents they come across in their travels. They can talk to other agents on the
same patch as they are, and in doing so, they exchange their knowledge about
shop locations: agent A gets all the knowledge of agent B to add to its own,
and B gets all the knowledge of A. Of course, this is not a faithful model
of humans talking: fortunately, we do not do a ‘brain dump’ of everything
we know onto other people in the way that these agents do! But this simple
model could be the basis for experimentation about factors such as the effect
of exchanging only some knowledge and what is the effect of introducing
errors in the transmission of knowledge.

To implement this addition, a line is added to theact procedure to make
the agentstalk if there are other agents on the same patch as this one.
Talking consists of selecting one of the other agents on the patch to talk
to, and then copying its memory into the agent’s memory, and vice versa.

to act
if any? other-agents-here [talk]
if not empty? shopping-list [shop]

end

to talk
locals [partner]
set partner random-one-of other-agents-here
remember memory-of partner
ask partner [remember memory]

end

Knowledge about shop locations gathered by one agent can now be
spread among the population. We have already discovered that knowing
about the locations of shops reduces the number of ticks required to fulfil
the agents’ shopping lists, but how much difference will the social exchange
of knowledge that we have now implemented make? Without thetalk pro-
cedure, the agents took an average of 7000 ticks to finish; with the addition
of talking, the time taken falls dramatically to about 2000 ticks (standard
deviation: 777).

This sequence of successively more complex agents shows how one
can construct increasingly more ‘intelligent’ agents by building on previous

190 Multi-agent models

capabilities. There is not space here to develop these agents further, even
though so far they remain very unsophisticated. For example, it would be
possible to restrict the exchange of knowledge to those agents which were
thought to be ‘friends’ according to some definition of friendship. Another
possibility would be to build a more realistic method of exchanging infor-
mation – in the code above there is only a direct and error-free symbolic
exchange from one agent to the other.

Nevertheless, even this very simple example of multi-agent modelling
has some of the features mentioned at the beginning of this chapter. The
agents control their own actions and internal state (they have autonomy).
The agents are able to interact with other agents (they have social ability).
The agents can perceive the (simulated) environment and respond to it (they
have reactivity). Finally, they are able to engage in goal-directed behaviour
(proactivity).

It would not be difficult to add code to test the effect of mistaken beliefs.
For example, shops could have a limited supply of the product they sell, and
so might eventually run out. However, agents would not be aware of this and
would still therefore move to them, expecting to be able to buy. Agents’
beliefs that the shops could help them with their shopping lists would
become less accurate over time. The information about shops constitutes a
crude form of a model of the environment which the agents construct as they
wander over the landscape. Other information could easily be added, such
as the locations of the other agents. At present, agents’ beliefs about shop
locations are kept in an unstructured form as a list. If more complex beliefs
were to be retained, one might consider constructing a semantic network or
another type of knowledge representation. The agents have just one simple
goal – to complete their shopping – and no planning abilities, and both these
aspects of the agents’ design could be augmented.

The extent to which the agents in this simple example have the at-
tributes and capabilities of human agents is of course extremely limited.
The challenge for the builder of a multi-agent simulation is to develop them
sufficiently so that useful and illuminating simulations of human societies
can be constructed. In the next section, we shall summarize three typical
examples of multi-agent models.

Examples of multi-agent modelling

In this section we will review several multi-agent models, beginning with
one in which the agents are only slightly more complex than the cellular

Examples of multi-agent modelling 191

automata discussed in the previous chapter, and moving through other ex-
amples which implement significantly more sophisticated and ‘intelligent’
agents. As we do so, we shall see that the more complex models allow
for experimentation with features more obviously associated with human
societies, such as the emergence of non-uniform distributions of wealth and
the impacts of shared beliefs.

Sugarscape

Sugarscape (Epstein and Axtell 1996) is a good example of a multi-agent
model which, although the agents are rather simple, yields a range of in-
teresting results about the emergence of social networks, trade and markets,
and cultural differentiation and evolution. Sugarscape models an artificial
society in which agents move over a 50× 50 cell grid. Each cell has a
gradually renewable quantity of ‘sugar’ that the agent located at that cell
can eat. However, the amount of sugar at each location varies spatially and
according to how much of the sugar has already been eaten (most Sugarscape
experiments are conducted on a landscape in which there are two ‘peaks’
of high sugar values in opposite quadrants of the grid). Agents have to
consume sugar in order to survive. If they harvest more sugar than they need
immediately, they can save it and eat it later or, in more complex variants of
the model, can trade it with other agents.

Agents can look to the north, south, east and west of their current
locations (but not diagonally) and can see a distance that varies randomly
according to the agents’ ‘genetic endowment’, so that some agents can see
many cells away while others can only see adjacent cells. Agents move in
search of sugar according to the rule: look for the unoccupied cell that has
the highest available sugar level within the limits of one’s vision, and move
there. Agents not only differ in the distance they can see, but also in their
‘metabolic rate’, the rate at which they use sugar. If their sugar level ever
drops to zero, they die. New agents replace the dead ones with a random
initial allocation of sugar. Thus there is an element of the ‘survival of the
fittest’ in the model, because those agents that are relatively unsuited to the
environment because they have high metabolic rates, poor vision, or are lo-
cated in places where there is little sugar for harvesting, die relatively quickly
of starvation. However, even successful agents die after they have achieved
their maximum lifespan, set according to a uniform random distribution.

Epstein and Axtell present a series of elaborations of this basic model in
order to illustrate a variety of features of societies. The basic model shows

192 Multi-agent models

that even if agents start with an approximately symmetrical distribution of
wealth (the amount of sugar each agent has stored), a strongly skewed wealth
distribution soon develops. This is because a few relatively well-endowed
agents are able to accumulate more and more sugar, while the majority only
barely survive or die.

Such simple agents exhibit few of the features of agents described earlier.
The only features they do have are goal orientation (their goals are to survive
and accumulate wealth) and being rule-driven. The agents in Sugarscape
become more interesting when the model is augmented to simulate inter-
agent trade. For this, an additional commodity is introduced: ‘spice’. Spice,
like sugar, is distributed over the landscape and is a requirement for agents’
survival. An agent’s metabolic rates for sugar and spice are independent of
each other, so that some agents may consume sugar at a high rate, but little
spice, while for others the reverse is true. Moreover, agents can barter sugar
for spice, if they are short of one, have an excess of the other and can find
another agent prepared to trade. This scenario can be used for a number
of investigations of economic equilibrium, price setting, the operation of
markets and so on.

First, however, a number of additions to the capabilities of the agents
have to be made. Agents need to have a way of comparing their needs for
the two commodities: a welfare function. This function is used to calculate
which of the cells available for an agent to move to is best for it. Agents
also need ways of valuing sugar and spice when it comes to making or
receiving offers to barter, negotiating a price and determining the quantity of
each commodity to exchange. Each of these factors is determined by rules
common to all agents.

Epstein and Axtell draw several conclusions from observing the trad-
ing in this extended model. All barters occur in a local context, negoti-
ated between pairs of agents without any central authority or ‘auctioneer’.
Nevertheless, prices do converge to an equilibrium level as predicted by neo-
classical economic theory, although this equilibrium is a statistical rather
than a deterministic one and some individual trades occur at prices that
deviate from the equilibrium price. Furthermore, the aggregate quantities
traded are less than the market-clearing quantities predicted by economic
theory. Another interesting consequence of introducing trade into the model
is that the distribution of wealth among the agents becomes even more
skewed and unequal.

Examples of multi-agent modelling 193

MANTA

While Sugarscape is firmly allied to the cellular automata approach, although
using a non-homogeneous grid for its landscape and agents that have some
limited cognitive abilities, the next example is closer to the idea of distributed
artificial intelligence. It is one of the few examples described in this book that
does not model a human society, but it is nevertheless interesting for the way
in which it employs a variety of kinds of agent, including agents which are
used to simulate the environment of other agents. The example is MANTA,
an acronym for Modelling an Anthill Activity, and the simulation is of the
birth of an ant colony (Drogoul and Ferber 1994; Drogoulet al.1995).

The queen ant of the tropical ant speciesEctatomma ruidumis the mother
of all the ants in her colony. During the very first days of the colony, the
queen ant is alone or with very few other ants, yet has to care for and, in
particular, feed the whole brood. That the process is difficult in nature is
shown by the fact that even in laboratory conditions, 86 per cent of new ant
colonies perish and the queen ants die before ten worker ants have been born.
The process of generating an ant colony and the ant society within it from
just the queen ant is calledsociogenesis, and the authors of MANTA aimed
to simulate this process with an artificial ant society.

The ants in MANTA are modelled as agents able to move around a simu-
lated ants’ nest environment (Figure 8.2). Ants carry out tasks to maintain the
colony, a task being a preset plan of activity built from a suite of primitives,
such as picking up objects, eating and looking after the brood. The tasks are
triggered by stimuli from the environment or from sources internal to the
ant, such as its goals. As mentioned previously, the ants do not interact with
each other in the normal sense of the word. Instead they drop stimuli into the
environment (analogous to leaving trails of chemical substances in a physical
environment) and these stimuli diffuse away along a gradient field. Some of
the stimuli are deposited intentionally (for example, to repulse other ants),
and some are deposited unintentionally in the course of performing tasks.
Other ants detect the stimuli and may react to them, triggering some new
task.

An ant can only engage in one task at a time. Which task is performed
depends on that task’s weight, threshold and activity level. The weight
indicates the relative importance to the ant of that task compared with
others. Repeatedly carrying out a task raises the task’s weight, as the ant
is considered to become more specialized in carrying it out. The threshold
decreases continuously so long as the task is not carried out. When the task is
performed, the threshold increases again. In this way, the threshold indicates

194 Multi-agent models

Figure 8.2: View of the simulated ant colony in MANTA (reproduced from
Drogoul and Ferber 1994)

Food

Ant

Eggs

Ant carrying Food

Cocoons

Larvae

Ant carrying Eggs

Ant curing Larvae

Add Agents

Change Nest

Controls

the ant’s ‘motivation’ to carry out a task. When the task is started, the activity
level is set to be proportional to the task’s threshold and the activity level then
decreases continuously so long as the task continues to be performed. The
ant switches to a new task when the product of the threshold and the weight
of the new task is greater than the activity level of the current task.

In MANTA, the use of agents is not restricted to modelling the ants. The
environment is also represented by means of agents. There are food agents,
humidity agents and light agents, as well as ‘dead ant’ agents. All these
environmental agents have just one task: to emit stimuli. For example, food
emits a stimulus which attracts hungry ants.

Thus in MANTA, although the agents have goals and a repertoire of
actions, there is no attempt to model cognitive or even symbolic processing.
Instead, the agents are reactive, acting only according to the contextually

Examples of multi-agent modelling 195

specific stimuli in which they are immersed. The way in which they behave
depends on the type of agent they are. Each type (egg, larva, cocoon or ant)
reacts in a different way to a given stimulus. The agents are also simple in
that they have no social model (indeed, they have no direct knowledge of
other ants) and no planning or knowledge representation capacity.

The simplicity of the agents’ design is appropriate for the modelling of
ants, whose cognitive capacity is obviously very limited. This is shown by
the fact that the simulation is able to reproduce some of the observed features
of natural sociogenesis. A typical experiment starts with some ‘humidity
agents’ near the left-hand wall of the artificial nest (Figure 8.2) and a
light agent outside the nest. Food agents are provided and replenished as
necessary. A single queen agent is placed in the nest and the simulation al-
lowed to run. The queen produces eggs that mature into larvae, cocoons and
eventually worker ants. Once 20 worker ants have been bred, the experiment
is treated as successful. More often, the queen dies from starvation before
this point has been reached. Observations can be made of the conditions that
encourage success and in Drogoulet al. (1995) experiments which examine
the effect of having more than one queen ant in the nest are reported.

The Evolution of Organized Society (EOS)

In the next example, we move from simulations such as Sugarscape and
MANTA which have used rather simple agents, to one based on agents
with much more complex capabilities for knowledge representation and
inference. The Evolution of Organized Society (EOS) project set out to
explore theories which account for the growth of social complexity among
the human population in the Upper Palaeolithic period (around 30,000 to
15,000 years ago) in south-western France (Doranet al. 1994). At that
time, there is believed to have been a change from relatively small (family-
sized) and autonomous groups of hunter-gatherers to much larger groups,
associated with the development of the well-known cave art, the creation
of more elaborate artefacts and evidence of trade. Archaeologists consider
these to be indicators of the development of social complexity, including
the emergence of status and roles within the society, and, in particular,
leadership and authority relationships (Mellars 1985; Gamble 1991). They
have hypothesized that this change resulted from environmental pressures
that tended to concentrate food resources in particular places and at partic-
ular times of the year. These resource concentrations led to localized high
population densities and a problem in coordinating activities and avoiding

196 Multi-agent models

cognitive overload (for example, resulting from trying to deal individually
with a large number of people). The solution to these problems was to stratify
the society and to assign individuals to roles, thus increasing the complexity
of the society.

The EOS model was intended to simulate such environmental conditions
and thereby investigate their consequences for the pattern of interactions
between agents. The simulation consists of a landscape with a population of
mobile agents and a scattering of resources which provide ‘energy’ for the
agents. The agents themselves are production systems which include rules
to implement agent-to-agent communication. The agents are able to build
models of their environment (including the other agents) and to do some
rudimentary planning.

The essential aspect which EOS investigated was the formation of re-
lationships between agents: either of hierarchy (leader–follower relations)
or alliances (groups of agents in a reciprocal relationship with each other)
(Doran and Palmer 1995). The assumption was that if the conditions that
promoted the formation of such relationships could be determined, this
would indicate the factors that led to social complexity. In particular, Doran
considered whether spatial concentration tended to encourage the formation
of hierarchies.

Agents in the EOS simulation could either acquire resources alone,
working individually, or they could construct ‘plans’ involving other agents
in order to secure the resources collectively. These plans identified the re-
sources to target, the agents which should take part, and the expected payoff
and its distribution among those involved. Having constructed such a plan, an
agent would then negotiate carrying it out with other agents. Since initially
all agents made plans, they were all likely to have several plans to choose
from, their own plan and those formulated by other agents, and they selected
the one with the greatest expected payoff.

In situations of plentiful resources, or resources very thinly distributed,
agents are likely to find that working alone had a greater payoff. But where
agents and resources are spatially concentrated, and especially when some
resources need several agents working together to harvest them, more com-
plex plans involving several agents will be more profitable. As time passes,
some agents will repeatedly adopt the plans proposed to them by particular
other agents, and these agents will come to see themselves as followers, led
by the agents whose plans they participate in.

Numerous experiments varying the parameters of this rather complex
model have been undertaken by Doran and Palmer (1995) and Doranet
al. (1994). As expected, agents had a much higher chance of surviving

Further reading 197

starvation and were found to form extensive hierarchies when they and
the resources were concentrated together. However, even when they were
close together, if there were not sufficient resources to maintain the agent
population, agents died, upsetting the hierarchies and leading to relative
disorganization. It was also found that if the hierarchies, once established,
were persistent, the agents’ chances of survival were worse than if the
leader–follower relations were relatively temporary. Further experiments
have explored the effect of introducing misperceptions: inaccurate social
models have the effect of reducing hierarchy formation (Doran 1998).

The EOS experiments illustrate how one can build a multi-agent sim-
ulation in which the agents include simplified models of human cognition:
they can perceive their environment and other agents, formulate beliefs about
their world, plan, decide on courses of action, and observe the consequences
of their actions. However, building such agents is a substantial exercise,
involving some difficult problems of design and programming. In addition,
practical problems have to be solved to ensure that such complex simu-
lations are in fact working as intended (see the discussion of verification
and validation in Chapter 2) and to run sufficient experiments to assess
the effects of each of the many parameters included in such models. The
next chapter reviews some suggestions for making the design of multi-agent
models easier.

Further reading

Multi-agent modelling is still new and there are few textbooks about the
construction of multi-agent systems. One recent example is:

• Ferber, J. (1998)Multi-agent Systems. Addison-Wesley, Reading, MA.

Epstein and Axtell show clearly and simply what can be achieved using quite
simple multi-agent models in:

• Epstein, J. M. and Axtell, R. (1996)Growing Artificial Societies –
Social Science from the Bottom Up. MIT Press, Cambridge, MA.

Unfortunately, the book does not include any examples of code, but the
algorithms are described explicitly and could be implemented fairly easily
using a multi-agent framework or toolkit. Many of Epstein and Axtell’s
examples have subsequently been implemented using other programming
systems (e.g. Swarm, RePast, NetLogo).

198 Multi-agent models

• Minar, N., et al. (1996) The Swarm simulation system: a toolkit
for building multi-agent simulations (http://www.santefe.edu/
projects/swarm/).
• RePast :: An Agent Based Modelling Toolkit for Java (http://

repast.sourceforge.net/).

JESS is a production rule engine and scripting environment written in
Java by Ernest Friedman-Hill. It is available freely fromhttp://herzberg.
ca.sandia.gov/jess/.

Many of the fundamental ideas used in multi-agent modelling (for exam-
ple, production systems, knowledge representation, semantic networks) have
been borrowed from artificial intelligence. The standard text on artificial
intelligence, and still one of the best, is:

• Winston, P. H. (1992)Artificial Intelligence. Addison-Wesley, Read-
ing, MA.

Another good text on AI that takes an agent perspective is

• Nilsson, Nils J. (1998)Artificial Intelligence: A New Synthesis. Mor-
gan Kaufmann, San Francisco, CA.

Chapter 9

Developing multi-agent systems

The previous chapter introduced the idea of multi-agent systems and offered
some examples of simulations based on this approach. This chapter goes
into more detail about designing and building multi-agent systems, outlining
a design process that will help with moving from an initial idea to a working
system. We shall review some techniques for describing, testing and vali-
dating multi-agent systems and conclude by considering how multi-agent
simulations can be integrated into research and policy development. Chapter
2 introduced some of these methodological issues, but this chapter will go
into more detail and apply them to multi-agent simulations.

The chapter will be illustrated by reference to a quite typical small-scale
multi-agent model published in the Journal of Artificial Societies and Social
Simulation (Jageret al. 2001). The article reports on a study of conflict in
crowds made up of two groups, such as when the supporters of opposing
football teams meet in the street. As the authors remark, the outcome can
vary from the peaceful mingling of the two groups to the occurrence of fights
and riots. The model allows the authors to experiment with different sizes
of groups, made up of different proportions of ‘hardcore’ agents, ‘hangers-
on’ and ‘bystanders’. Eighty simulation runs were conducted with a variety
of group sizes and compositions and the article concludes that fights are
most common in large groups with a relatively large proportion of hardcore
members when the groups are quite different sizes (see Figure 9.1).

200 Developing multi-agent systems

Figure 9.1: An example for the two-party crowd model (dots in light
and dark grey), with some participants fighting (black dots). From a re-
implementation of Jageret al. (2001) in NetLogo. 300 participants of one
party and 100 of the other; 5 per cent hardcore

Making a start

The research question and the model that is to be designed is sometimes
clear from the start. More often, one has an idea of the topic, but not anything
more precise. It is essential that a general interest in a topic is refined down
to a specific question before the model design begins. If this is not done, the
design task can either seem impossibly difficult or your model can become
too encompassing to be helpful. It is useful to think about narrowing down
a research question in terms of a moving through a set of layers (see Punch

Making a start 201

2000 for a helpful treatment). An area of research, such as group processes,
contains many topics, for example, the behaviour of two party crowds. More
specific is a general research question, usually phrased in terms of theoretical
concepts and the relationship between these. The research question asked in
Jageret al.’s paper is, what is the relationship between the characteristics
of a two-party crowd and the occurrence of fights among the participants?
The general research question will generate a small number of specific
research questions, such as what is the relationship between the proportion
of ‘hardcore’ members of a crowd and the chances of there being fights?
The specific research questions should be at a level of detail such that their
concepts can be used as the main elements of the model. Finally, there are
data questions that the model will answer with proportions or percentages:
for example, how much difference does it make to the likelihood of fighting
if the hardcore percentage is 1 or 5 per cent?

The social world is very complicated, a fact that modellers are well
aware of, especially when they begin to define the scope of a model. As
noted in Chapter 2, the art of modelling is to simplify as much as possible,
but not to oversimplify to the point where the interesting characteristics
of the phenomenon are lost (Lave and March 1993). Often, an effective
strategy is to start from a very simple model, which is easy to specify and
implement. When one understands this simple model and its dynamics, it
can be extended to encompass more features and more complexity.

The simplest model of a crowd is probably a system in which the agents,
all identical and scattered over a square grid, randomly drift from one cell
to the next. Such a model can be constructed in just a few lines of NetLogo.
The behaviour will not be interesting - if the agents start at random locations
and move randomly, the pattern of agents on the grid will remain random –
but it will serve well as the baseline from which more interesting behaviours
can be added. The baseline model can be designed to be the equivalent of
a null hypothesis in statistical analysis: a model which is not expected to
show the phenomenon in question. Then if an addition to the baseline model
is made, and the model behaves differently, one can be sure that it is the
addition which is having the effect.

Jageret al.’s model includes three developments of this baseline model:
a set of agent behaviours that vary according to the number of other agents in
the locality; a division of the agents into two ‘parties’ which are potentially
in conflict with each other; and a division of the agents into three types:
hardcore, hangers-on and bystanders. Each of these developments affect the
patterns that are obtained from the simulation in interesting ways. However,
there are many other extensions that could be made to the model (for

202 Developing multi-agent systems

example, adding obstructions to the uniform grid over which the agents
move) and each of them could have unanticipated interactions with other
extensions. To reduce the complexity of all these possibilities, it is best to
start simple and then gradually add features one by one.

This strategy also has the advantage that it helps to focus attention on the
research question or questions that are to be answered. A modeller should
always have at the forefront of their attention why they are building the
model and what they are seeking to obtain from it. It is a good idea to
write down at the beginning one or two questions that the modelling aims
to answer. This could be as a summary objective, together with a few sub-
objectives. The authors of the Jageret al.’s paper state that their concern was
with the characteristics of large groups that encouraged fighting among their
members. Hence their question was, what are the effects of group size, group
symmetry and group composition on the likelihood of outbreaks of fighting
in two-party crowds? A clear statement like this of the research question can
be very helpful in guiding the development of a multi-agent model.

If the baseline model is simple enough, the first prototype implementa-
tion can sometimes be a ‘pencil and paper’ model, in which the designer (or
the designer and a few colleagues) play out the simulation ‘by hand’ through
a few rounds. This simulation of a simulation can quickly reveal gaps and
ambiguities in the design, without the need to do any coding.

From theory to model

Designing a model is easier if there is already a body of theory to draw on.
At an early stage, therefore, one should look around for existing theory, in
just the same way as with more traditional social science methodologies.
Theories that are about processes of change and that consider the dynamics
of social phenomena are of course likely to be more helpful than theories
about equilibria or static relationships, but any theory is better than none.
What the theory provides is an entry to the existing research literature,
hints about what factors are likely to be important in the model, and some
indications about comparable phenomena. For example, Jageret al.explain
in the introduction to their paper that early theories assumed that people’s
personalities are different in crowd situations as compared with their normal
personality, but later writers agree that this is not so. What is different
is that normal cultural rules, norms and organizational forms cease to be
applicable in crowds, and people fall back on simpler behavioural rules that
can be understood by all without instructions or much cultural knowledge.

From theory to model 203

This theoretical orientation informs their choice that the participants will be
modelled using a set of three rather simple behavioural rules, which they call
the restricted view rule, the approach-avoidance rule and the mood rule.

The role of theory can thus be to direct attention to the relevant features
that need to be modelled (such as Jageret al.’s behavioural rules), but it
can also be more fundamental to the modelling work. Malerbaet al. (1999)
coined the term ‘history-friendly’ to describe a model that is intended to
encapsulate an existing theory, previously only formulated as text. Reporting
a study of the long-term evolution of the computer industry, they write:

We have taken a body of verbal appreciative theorizing, de-
veloped a formal representation of that theory, and found that
the formal version of that theory is consistent and capable of
generating the stylized facts the appreciative theory purports to
explain. Going through this analytic exercise has significantly
sharpened our theoretical understanding of the key factors be-
hind salient aspects of the evolution of the computer industry.
(Malerbaet al.1999: 3)

Another function of theory can be to identify clearly the assumptions on
which the model is built. These assumptions need to be as clearly articulated
as possible if the model is to be capable of generating useful information. For
example, in the crowd model, Jageret al.assume that there are three types of
participant, hardcore, hangers-on and bystanders, and that the proportions of
each of these types is about 1:2:97, that is the great majority of the crowd are
bystanders. The article discusses the effect of varying these proportions, for
example, of increasing the hardcore component to 5 per cent, and compares
the proportions with evidence from observation of actual crowds.

The design process

Once the research questions, the theoretical approach and the assumptions
have been clearly specified, it is time to begin to design the simulation. There
is a sequence of issues that need to be considered for almost all simulations,
and it is helpful to deal with these systematically and in order. Nevertheless,
design is more of an art than a science and there is no ‘right’ or ‘wrong’
design so long as the model is useful in addressing the research question.
Although designing models may seem hard the first time, it becomes easier
with practice and experience.

The first step is the definition of the types of objects to be included in the

204 Developing multi-agent systems

simulation. Most of these objects will be agents, representing individuals or
organizations, but there may also be objects representing inanimate features
that the agents use, such as food or obstacles. The various types of object
should be arranged in a class hierarchy, with a generic object at the top,
then agents and other objects as sub-types, and if necessary, the agent type
divided into further sub-types.

These classes can be arranged in a ‘tree’ structure, as in Figure 9.2. This
diagram shows the class hierarchy for the simulation of crowds. The diagram
is simple because in this simulation there are only three types of agent and
no inanimate objects. If we had wanted to extend the model to include, for
example obstacles which participants would have to move around, this would
have meant an additional class, as shown.

Figure 9.2: Class hierarchy for the Two-Party Crowd model

Object

Agent

Hardcore Hanger-on Bystander

Obstacle

Notice that we have defined a class of Agent, as a type of generic object,
and that each of the types of crowd member is a sub-type of this Agent. This
means that we shall be able to arrange for much of the coding to be located in
the Agent class and that each type of participant is just a small modification
- a ‘specialization’ - of the basic Agent type. Arranging it in this way makes
it much easier to see what differs between the crowd members, and what is
the same.

The diagram shows classes or types of object. Each actual object in the
simulation will be an example of one of these types (an ‘instance’ of the
class). All instances of a class are identical in terms of the code that creates

From theory to model 205

and runs them, but each instance can be in a different state, or have different
attributes.

Once the objects have been decided, one can consider the attributes of
each object. An attribute is a characteristic or feature of the object, and is
either something that helps to distinguish the object from others in the model,
or is something that varies from one time in the simulation to another. For
example, in the crowd simulation, the level of aggression is an attribute of
the agents that varies over time. Hardcore agents scan their surroundings
more frequently than hangers-on, and so scan frequency is a good choice
for another attribute of an agent. Attributes function like variables in a
mathematical model, and most of the things that vary will need to be treated
as attributes in the simulation.

Consider each object in turn, and what features it has that differ from
other objects. Properties such as size, colour or speed might be relevant
attributes in some models. State variables such as wealth, energy and number
of friends might also be attributes. An attribute might consist of a single one
of a set of values (for example the colour attribute might be one of red, green,
blue or white); a number, such as the energy level of the agent; or a list of
values, such as the list of the names of all the other agents that an agent
has previously encountered. Sub-types inherit the attributes of their types, so
that, for instance, if all objects have a location, so do all sub-types of Object,
such as Agents and Obstacles.

When the attributes for each class of object have been decided, they can
be shown on the class diagram, as in Figure 9.3. This way of representing
classes and attributes is taken from a design language called the Unified
Modelling Language (UML) (Boochet al. 2000) and is commonly used in
object-oriented software design. In the example, the attributes for partici-
pants in the crowd are shown in the Agent box. In this example, the sub-
types of agent – hardcore, hanger-on and bystander – have only one attribute
in addition to the ones that they inherit by virtue of being types of Agent,
but in other models, sub-types will commonly have attributes that they alone
possess, to represent features particular to that type.

There will be some features that can either be implemented as attributes
or as sub-classes. For example, we could define distinct sub-classes for the
three types of crowd participant, as suggested above, or there could be one
type of agent with an attribute called, for example, ‘participant-type’ and
taking one of the values, ‘hardcore’, hanger-on’ or ‘bystander’. Do which
ever seem to be more natural, provided that there are not too many sub-
classes (while it is reasonable to have three sub-classes of Agent, one for
each type of participant, it would be awkward if there were a hundred types

206 Developing multi-agent systems

Figure 9.3: Class hierarchy with attributes

Agent
party
sub-type
acquaintances
aggression-level
...

Object
location

Obstacle
size
shape

Hardcore
Scan interval == 1

Bystander
Scan interval == 8

Hanger-on
Scan interval == 2

of participant and a sub-class for each, while it would not be a problem to
have an attribute with a hundred possible values).

The next stage is to specify the environment in which the objects are
located. Often, the environment is a spatial one, and each object has a
location within it (in that case, the objects need to have attributes that indicate
where they are at the current time). But there are other possibilities, such as
having the agents in a network linked by relations of friendship or trade with
other agents. Sometimes it may be convenient to represent the environment
as another object, albeit a special one, and specify its attributes. One of the
attributes will be the current simulated time. Another may be a message
buffer which temporarily holds messages sent by agents to other agents via
the environment before they are delivered.

In the course of defining the classes, attributes and environment, you will
probably find yourself going back and forth, adding or refining each of them
in an iterative process until the whole set seems consistent. When this is
done, at least to a first approximation, you have a static design for the model.
The next step is to add some dynamics, that is, to work out what happens
when the model is executed.

Adding dynamics 207

Adding dynamics

It is usually easiest to start by considering the interactions of each class of
agent with the environment. An agent will act on the environment in one or
more ways. For example, the participants in the crowd simulation move from
location to location. You should list all these interactions, and also create a
list of the ways in which the environment acts on the agent. For example,
the environment prevents crowd members from moving into a location that
is already occupied by another agent.

Once these lists of the actions of the agents and the environments have
been created, we can move on to consider when the actions happen. Against
the list of agent actions on the environment, indicate the conditions under
which these actions should occur. This table of conditions and actions will
lead naturally to defining a set of condition-action rules. Each rule should be
associated with a unique state of the agent (a unique set of attribute values
and inputs from the environment).

After the interactions with the environment have been decided, the same
job can be done for interactions between agents. In the crowd simulation,
there are two types of interaction: the agents can approach other agents that
they know, and they can fight agents of the other party. As before, these
actions need to be associated with the conditions under which the actions are
taken; for example, in the crowd simulation, agents will fight only when they
have an ‘aggression motivation’ higher than 25 units and they are adjacent
to their victim.

It is likely that, in working through these lists, it will be realized that
additional attributes are needed for the agents or the environment or both, so
the design process will need to return to the initial stages, perhaps several
times. When a consistent set of classes, attributes and rules has been created,
it can be helpful to summarize the dynamics in a sequence diagram, another
type of UML diagram. A sequence diagram has a vertical line for each type
or class of agent, and horizontal arrows representing messages or actions that
go from the sender object to the receiver object. The sequence of messages
is shown by the vertical order of the arrows, with the top arrow representing
the first message and later messages shown below. Figure 9.4 is an example.
The diagram shows two types of agent having a fight which lasts for 100
time steps. This diagram is rather simple because there are only two objects
and two messages shown, but in more complex models, sequence diagrams
can become quite elaborate (see Figures 2 and 3 of Etienneet al. 2003 for
an example).

It can also be useful to employ statechart and activity diagrams to

208 Developing multi-agent systems

Figure 9.4: Sequence diagram

Participant A Participant B
[Aggression > 25]
Attack

Set Aggression to 0

Ti
m

e

0

100

Figure 9.5: Activity diagram showing the behavioural rule for crowd partic-
ipants (after Jageret al.2001)

Scan N own party -
N other party

[>= 10] Add 1 to
Aggression
motivation

[<= -10]

Subtract 1 from
Aggression
motivation

[-10 < n < 10] Aggression
motivation

Contact with
agent from
other party

Aggression
motivation

>25?

Perception of
other party?

Fight

Approach
other
party

Move or
stay still

N own party -
N other party

Perception of
own party?

Perception of
acquaintance

Approach
acquaint-

ance

Approach
own party

[> 15]

[<= 15]

[yes]

[yes]

[no]

[> - 10]

[<= -10]

[yes]

[yes]

[no]

[no]

[yes]

[no]

[no]

summarize the behaviour of agents (Fowler and Scott 1999). A statechart
diagram shows each distinct state of an agent and what is involved in moving
from one state to another. An activity diagram shows how decisions are made
by an agent. Figure 9.5 shows the behavioural model of a crowd agent as an
activity diagram (adapted from Jageret al.2001).

Cognitive models 209

Cognitive models

Figure 9.5 could be thought of as a rather simple cognitive model of an agent.
It describes how the agent reacts when presented with stimuli from the envi-
ronment. However, as a cognitive model it suffers from being divorced from
psychologists’ understanding of how human cognition works. If the research
question warrants it, cognitive models that are relatively well-supported by
psychological data can be used either directly in a simulation, or as the in-
spiration for psychologically informed agent rules. One of the first cognitive
models was Soar (Lairdet al.1987), and it continues to be developed to this
day (for a recent overview, see Wray and Jones 2005). Soar is a production
rule system, meaning that it includes condition-action rules, such as those
discussed in the previous chapter, although it can also handle more powerful
rules that include variables (using predicate, rather than propositional logic).
Soar also has a working memory, but in contrast to the simple production rule
architecture introduced in Chapter 8, this memory is partitioned into ‘states’,
corresponding to the different problems that the agent has been solving. The
condition of more than one production rule may be matched at any one
time, and Soar has a system of preference procedures to prioritize which
rule is to fire among all those whose conditions match. Soar runs repeatedly
through a ‘decision cycle’ in which it first obtains perception inputs from the
environment, computes the set of rules that could fire, applies the preference
procedures to select one rule to fire, and then fires that rule by carrying out
the action it specifies. Finally, any output to the environment is performed.
This cycle is repeated indefinitely. (This is a simplified account of a more
complex mechanism; for details see Rosenbloomet al.1993.)

ACT-R is another cognitive model (or ‘architecture’) with similar aims to
Soar: to simulate and understand human behaviour (Anderson and Lebiere
1998). It is a modular system, with distinct modules that deal with memory,
perceptual inputs from the environment, buffers that manage the interfaces
between modules, and a pattern matcher that determines which rules are
able to fire. Like Soar, ACT-R includes a production system, but it also has
a sub-symbolic level that controls the activities of the symbolic modules.
For example, the sub-symbolic system is used to weight rules in order
to decide which one of several candidates should fire, taking the place of
Soar symbolic preference procedures. At the symbolic level, information in
working memory and production rules are divided into chunks and can be
retrieved according to their sub-symbolic ‘activation’. The activation of a
chunk is influenced by factors such as how frequently it is accessed, how
long it has been since it was last accessed, and how closely linked into other

210 Developing multi-agent systems

active information it is. This allows ACT-R to be used to model learning and
forgetting.

The advantage of these architectures is that they build on decades of
cognitive science research on human performance. Using one of them there-
fore increases the chance that the behaviour of one’s agent corresponds to
the behaviour of a human given the same situation, history and perceptions.
Both SOAR and ACT-R are available as implementations that can be down-
loaded over the Internet and used much like a programming language to
build models. However, this comes at a cost. The amount of knowledge
that needs to be built into a cognitive model in order for it to operate at
all may be out of proportion to the value obtained from using it. Because of
their complexity, these cognitive models require a lot of preliminary work
to learn how to operate them, generally run slowly, and are rather difficult
to integrate with other simulation tools (for example, SOAR is a stand-alone
program, whereas ACT-R is a library written in the programming language
Lisp; the rest of one’s multi-agent simulation will also therefore need either
to be written in or be able to interface with Lisp). Rather than using the
programs directly, it is also possible to implement some elements of their
cognitive architectures in one’s own models, in whatever level of detail
seems appropriate to the research question.

The user interface

At this stage in the design process, most of the internal aspects of the model
will have been defined, although normally there will still be a great deal of
refinement needed. The final step is to design the user interface. Depending
on the toolkit being used, the components of this interface will be sliders,
switches, buttons and dials for the input of parameters, and various graphs
and displays for the output, to show the progress of the simulation. Initially,
for simplicity it is best to use a minimum of input controls. As understanding
of the model improves, and additional control parameters are identified,
further controls can be added. Similarly, with the output displays, it is best to
start simple and gradually add more as the need for them becomes evident.
Of course, every model needs a control to start it, and a display to show that
the simulation is proceeding as expected (for example, a counter to show the
number of steps completed). At the early stages, there may also be a need
for output displays that are primarily there for debugging and for building
confidence that the model is executing as expected. Later, if these displays
are not required to answer the research question, they can be removed again.

Unit tests 211

For their article on clustering in two-party crowds, Jageret al.used three
displays: a view of the square grid over which the agents moved (see Figure
9.1); a plot of a clustering index against simulated time and a plot of the
number of fights started at each time step. It is likely, however, that in the
work that led up to the writing of the article, several other plots would
have been examined. It is the requirement to build plots quickly and without
much extra effort that makes the use of toolkits for multi-agent modelling so
necessary. For example, an advantage of NetLogo, the package described in
the previous two chapters, is that a fully labelled line plot showing how some
parameter changes over time can be added with only two lines of program
code.

Unit tests

Even before the coding of a model is started, it is worth considering how
the simulation will be tested. A technique that is gaining in popularity is
‘unit testing’. The idea is that small pieces of code that exercise the program
are written in parallel with the implementation of the model. Every time the
program is modified, all the unit tests are re-run to show that the change has
not introduced bugs into existing code. Also, as the model is extended, more
unit tests are written, the aim being to have a test of everything. The idea
of unit tests comes from an approach to programming called XP (for eX-
treme programming, Beck 1999), a software engineering methodology that
is particularly effective for the kind of iterative, developmental prototyping
approach that is common in most simulation research. When there are many
unit tests to carry out, it becomes tedious to start them all individually and
a test harness that will automate the process is needed. This will also have
to be designed, possibly as part of the design of the model itself, although
there are also software packages that make the job easier (see, for example,
the open source Eclipse toolset,http://www.eclipse.org/).

When the model is working as expected, it will probably be necessary
to carry out sensitivity analyses (see Chapter 2) involving multiple runs of
the simulation while varying the input parameters and recording the outputs.
Doing such runs manually is also tedious and prone to error, so a second
reason for having a test harness is to automate analysis. You should be
able to set the starting and ending points of an input range and then sweep
through the interval, rerunning the model and recording the results for each
different value. To enable this to be done, the model may have to have two
interfaces: a graphical one so that the researcher can see what is happening

212 Developing multi-agent systems

and an alternative test- or file-based interface which interacts with the testing
framework (for example NetLogo has a facility called the ‘BehaviorSpace’).

Debugging

It is very likely that all the output you will see from your first run of your
model is due, not to the intended behaviour of the agents, but to the effect
of bugs in your code! Experience shows that it is almost impossible to
create simulations that are initially free of bugs and, while there are ways
of reducing bugs (for example, the unit test approach mentioned above), you
should allow at least as much time for chasing bugs as for building the model.
The most important strategy for finding bugs is to create test cases for which
the output is known or predictable, and to run these after every change until
all the test cases yield the expected results. Even this will not necessarily
remove all bugs and modellers should always be aware of the possibility that
their results are merely artefacts generated by their programs.

Another kind of test is to compare the results from the model with data
from the target (that is, from the ‘real world’ being modelled). While such
comparisons are highly desirable, it is not often that they can be achieved.
Often, the target is itself neither well understood nor easy to access (that
this is so is one reason for building a simulation, rather than observing the
target directly). In addition, the behaviour of both the target and the model
may be stochastic (influenced by random events) and very sensitive to the
conditions or parameters at the start (Goldspink 2002). If the latter is the
case, even a perfect model could be expected to differ in its behaviour from
the behaviour of the target. It may be possible to run the model many times
to obtain a stable statistical distribution of the output, but normally it is not
possible to ‘run the real world’ many times. As a result, the best one can do
is to test that there is a reasonable likelihood that the observed behaviour of
the target could be drawn from the distribution of outputs from the model –
which is rather a weak test.

The most thorough way of verifying a model (of ensuring that the output
does reflect the underlying model and is not a consequence of bugs - see
Chapter 2) is to re-implement the model using a different programming
language and, ideally, a different implementer. Haleset al.(2003) comment:

It is now clear that MABS [multi-agent based simulation] has
more in common, methodologically, with the natural sciences
and engineering disciplines than deductive logics or mathemat-

Debugging 213

ics – it is closer to an experimental science than a formal one.
With this in mind, it is important that simulations be replicated
before they are accepted as correct. That is results from simula-
tions cannot be proved but only inductively analyzed. This indi-
cates that the same kinds of methods used within other inductive
sciences will be applicable. In its simplest form a result that is
reproduced many times by different modellers, re-implemented
on several platforms in different places, should be more reliable.
Although never attaining the status of a proof we can become
more confident over time as to the veracity of the results. (Hales
et al.2003: 1.4)

Some experiments in re-implementing multi-agent models have been
carried out, a process sometimes called ‘docking’, with interesting results: in
a few cases, it has been found impossible to replicate even published models
(see Axelrod 1997b and Haleset al. 2003 for examples). In preparation for
writing this chapter, the Jageret al. model (which was originally written in
the programming language C++) was re-implemented in NetLogo. Because
the paper describing the simulation was well written, the re-implementation
could be done without recourse to the authors, except for a few matters
requiring clarification. The re-implementation yielded the same patterns of
clustering and fighting as reported in the original article.

Having obtained a simulation that you believe to be free of bugs and
accurately representing your design, it remains only to compare the simu-
lation with the target and use the model to generate results. The process of
validation and use has been described in Chapter 2 and there is little that
is special to multi-agent models in this respect. To recall, it is desirable to
engage in a sensitivity analysis to examine the extent to which variation in
the model’s parameters yield differences in the outcome. One result that may
come from such analysis, or from the theoretical background to the research
question, is the range of applicability of the model, that is, the circumstances
in which the model corresponds to the target. For example, the two-party
crowding model would not apply if the number of participants is very low
(there is not then a ‘crowd’). It is important when presenting results to state
clearly the range of applicability of the model.

214 Developing multi-agent systems

Using multi-agent simulations

Many agent-based simulations are built in order to develop and test social
theories, others have a more practical objective: to help a group of people
understand their world in order to control and change it. For example, social
simulation is now being used to develop policy for the management of water
resources, suggest advice to online companies about marketing products on
the Internet, understand the implications of major bank strategic policies,
manage rural ecosystems and learn how better to respond to epidemics. The
connection between these otherwise disparate topics is that in each case there
is a group of ‘stakeholders’ who are interested in the simulation because they
hope to learn from the results and thus improve their effectiveness.

Rather than merely presenting the results of simulation research to po-
tential users at the end of a project, it is becoming increasingly common
for the stakeholders to become involved at all stages, from the formulation
of the initial research question to the synthesis of the research conclusions.
There are several advantages to having stakeholders closely involved. First,
one can be more confident that the research question being tackled is in
fact one whose answer is going to be relevant to the users. In the traditional
mode, it is all to easy for projects to study issues which are of interest to the
researcher, but of little relevance to the audience for the research. Bringing
in the stakeholders at an early stage helps to make this less likely. Second,
stakeholders are more likely to feel some obligation to respond to the re-
search findings if they have been closely involved in the project. The research
report is less likely to be filed and forgotten. Third, stakeholders are often a
rich source of knowledge about the phenomenon being modelled. Fourth,
their involvement in the research is itself likely to raise their interest in
and level of knowledge about the issues. These advantages of ‘participatory
modelling’ (Hareet al.2003) can outweigh the disadvantages, which include
the added complication and expense of involving stakeholders, the need to
maintain stakeholders’ motivation during the project, and the possibilities of
bias resulting from the particular viewpoints of stakeholders.

Agent-based simulation is well suited to participatory research
(Ramanath and Gilbert 2004). The idea of autonomous agents carrying out
activities and communicating with each other is easy to grasp for people who
are not familiar with modelling. Another advantage is that it is sometimes
possible to design the model so that the stakeholders themselves can act as
agents. For example, it may be possible to run the model, not as a computer
simulation, but as a board game, with users playing roles and following the
rules that otherwise would have been programmed into the agents (see Hare

Conclusion 215

et al. 2002). Alternatively, one or more of the ‘agents’ in a computational
simulation can be played by a person who selects which actions to carry
out at each step, the computer running the other agents in the ordinary way.
The benefit of this is that the person can get a deep knowledge of what is
involved in playing the role. For example, this is the approach adopted in
a project that was designed to help the stakeholders involved in providing
domestic water to the city of Zurich. The ‘Zurich Water Game’ (Gilbert
et al.2002) was a multi-agent simulation in which some of the agents could
be switched to being controlled by the game players. The game ran over
the Internet, with a central server generating the environment and simulating
all the agents that were not being directly controlled by the players. Using
the game, players could explore the consequences of their own decisions on
other players’ strategies, and the feedback effects of those strategies on their
own opportunities and strategies.

Conclusion

In this chapter, we have described a process for designing multi-agent mod-
els. It will be of most help to you if you have an idea of the topic that you
are interested in but not yet a clear research question or a model design.
Experience has shown that moving from a research interest to a model design
is probably the hardest part of building multi-agent models and it is therefore
useful to set about the task in a systematic way. On the other hand, it is
possible to design good models without following any of the suggestions
made in this chapter, which should be treated only as useful heuristics.

In the next chapter, we move to examining simulation models that are
capable of adapting and learning from their experience. The design issues
remain the same as with the simpler multi-agent models we have been con-
sidering in this chapter, but have the added complication that the behaviours
of the agents may change during the course of the run.

Further reading

The process of designing multi-agent models is also described in

• Axelrod, R. (1997) Advancing the art of simulation in the social
sciences.Complexity, 3(2):16–22.

216 Developing multi-agent systems

• Gilbert, N., and Terna, P. (2000). How to build and use agent-based
models in social science.Mind and Society, 1(1): 57–72.

The value of cognitive architectures in social simulation and some exam-
ples are reviewed in:

• Sun, Ron (ed.) (2005)Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Simulation. Cambridge University Press,
Cambridge.

Soar can be found athttp://sourceforge.net/projects/soar and
ACT-R athttp://act-r.psy.cmu.edu/software/.

Chapter 10

Learning and evolutionary models

In previous chapters we encountered a wide range of types of model, but all
share the characteristic that they remain unchanged during the course of the
simulation. In this chapter, we consider models that incorporate learning: as
the simulation runs parameters change, or even the form of the model itself
changes, in response to its environment. These models are based on work in
machine learning and optimization, both very active areas of research. This
chapter cannot cover all the current approaches and we shall concentrate on
two that are influential in current social simulation: the use of artificial neural
networks and models based on evolutionary programming.

Both are loosely based on analogies from biology. The brain is composed
of cells called neurons, which communicate by means of a dense web of
interconnections conveying electrochemical impulses. Each neuron obtains
inputs from a number of other neurons, and if it receives an excitatory input
of sufficient strength, it ‘fires’ and outputs a pulse to other neurons. The hu-
man brain is estimated to contain around 100 million neurons. Learning takes
place when two neurons fire at the same time, strengthening the connection
between the two and reinforcing that particular pathway. Artificial neural
network models are based on a drastic simplification of these biological
findings about the brain. Although an artificial neural network typically
consists of less than 50 ‘units’, each analogous to a neuron, rather than the
100 million of a human brain, it is capable of learning that when presented
with a stimulus it should output an appropriate signal.

The other analogy used to construct learning models is the process of
evolution by natural selection. Imagine a large population of rabbits that

218 Learning and evolutionary models

breed, producing baby rabbits, and then die. The rabbits exist in a moderately
unfriendly environment and have to face predators, limited food supplies and
disease, so that not all baby rabbits survive to breeding age. Suppose that rab-
bits with large ears are ‘fitter’ within this environment and therefore are more
likely to reproduce than those with smaller ears. Pairs of rabbits mate and
produce offspring based on the combination of the parents’ genes. Gradually,
as the population reproduces itself, there will be a tendency towards rabbit
ears becoming larger, because big-eared rabbits are the more likely to breed
and produce correspondingly big-eared offspring. The population taken as a
whole can be considered to be ‘learning’ how to adapt to an environment that
favours big-eared rabbits, although no individual rabbit has any knowledge
of this fact.

Genetic algorithms (GAs) have been developed that mimic this process
of natural selection (Holland 1975). They are particularly useful for finding
optimal solutions to complex problems. For example, a wholesaler might
want to plan the route of a delivery van so that it visits a number of shops. The
order in which the van goes to the shops is not important but the route must
minimize the total distance travelled. This is an example of the well-known
class of ‘travelling salesman problems’, which have been shown to have no
general analytical solution. However, one efficient method of finding a good
route is to simulate multiple copies of the delivery van (each corresponding
to one agent in a large population), and give each van a route generated at
random. The fitness of each of these routes is assessed according to how far
the delivery van has to travel: the ‘fitter’ routes are those that are shorter.
Then new routes are ‘bred’ from the previous routes by mixing, so that the
‘offspring’ route has some parts taken from one parent’s route and some
parts taken from the other. The pairs of parents are chosen in a way that
favours shorter routes over longer ones. In this way, successive generations
include better and better routes as selection discards long routes and favours
progressively shorter ones (for an extended discussion, see Michalewicz
1996: Chapter 10).

Genetic algorithms are a sub-field of an area called ‘evolutionary com-
putation’. As we shall see in the second half of this chapter, evolutionary
computation can be used to model changes within societies, provided that
there is some analogue to the reproduction of individual members with
offspring inheriting genetic material from their parents. The ‘reproduction’
does not have to be sexual: one can also model the reproduction of ideas and
norms. Genetic algorithms can also be used as a ‘black box’ optimization
technique, in which the evolutionary details are irrelevant, for example to
simulate agents’ adaptation to their environment. Before considering such

Artificial neural networks 219

models in detail, we shall review the use of artificial neural networks for
social simulation.

Artificial neural networks

An artificial neural network consists of three or more layers of ‘units’
arranged so that every unit in one layer is connected to every unit in the
adjacent layers (Figure 10.1). Every connection has a numerical weight
associated with it. One layer of units is known as theinput layer, and this
receives stimuli from the environment (by convention this layer is drawn
on the left-hand edge of the network). On the right-hand edge is theoutput
layer, which emits the response of the network. In the middle are one or more
hiddenlayers. In operation, a pattern of stimuli is applied to the input units,
each unit receiving a particular signal. The hidden units take the signals they
receive from the units in the preceding layer, process them and generate an
output signal which is passed to the succeeding layer.

Figure 10.1: An artificial neural network

Input units

Hidden units Output units

Connection

The strength of the output from a unit is called itsactivation. The
activations of the input layer’s units are set directly by the stimulus, and
the activations of the output layer units are decoded to provide the network’s

220 Learning and evolutionary models

response. For all but the input layer units, activation depends on the strength
of the inputs a unit receives, the weights associated with each of its input
connections and a mathematical function (theactivation function) which
is used to calculate the resulting activation from all the unit’s weights and
inputs.

The activation function processes the inputs by multiplying the mag-
nitude of each of the input signals arriving along a connection by the
corresponding weight for that connection and summing the results of these
multiplications. The sum is then rescaled using a nonlinear transformation so
that it has a value between zero and one. Most often, the transformation used
is the sigmoid or logistic function (Figure 10.2). The result is then passed on
to the next layer.

Figure 10.2: A sigmoid curve (y = 1
1+e−x)

Consider a three-layer network trained to recognize handwritten digits.
In order to convert a handwritten ‘9’, for example, into something the
network can process, one would need to devise a coding scheme in order
to transform pen marks into numbers for presentation to the input layer. This
is known as theencodingproblem and we shall consider it in more detail in
a later section. For the moment, assume that a square grid of 6× 6 cells is
overlaid on the image of the digit and a value of one is recorded for every cell

Artificial neural networks 221

which contains some ink and zero for every cell which does not. This yields
a pattern of 36 ones and zeros which forms the input. We use a network with
36 units in the input layer, four in the hidden layer and ten in the output
layer, and feed a one or zero to each input unit. Those units that have an
input of one will fire and each will feed its activation to all the units in the
hidden layer. Each unit in the hidden layer will absorb the signals it receives
from the input layer, transform them according to the weights associated
with each of its input connections and generate an activation which is sent
to the output layer units. With a well-trained network, just one output unit
will be activated as a result of the inputs it receives from the hidden layer
and this output will correspond to the number 9. Presenting the digit 8 to the
input layer should result in a different output unit being activated, and so on
for each possible digit. The network is thus able to recognize handwritten
characters, decoding them to yield a response on one of the ten output units,
according to the input stimulus.

The description so far has assumed that the network is alreadytrainedso
that it gives the right output for a given input. The training involves adjusting
the weights on the connections between layers so that the correct output is
obtained for each input. This is done by a procedure calledbackpropagation
of error. It is a completely mechanical process that does not involve the
network gaining any kind of ‘understanding’ of the inputs it receives. To train
a network, one needs a large set oftraining data, examples of the patterns
that the network is intended to recognize. Starting with weights randomly
assigned to connections, the network is repeatedly given the training data to
process, and the weights associated with each connection are adjusted until
the network is able to recognize all the training examples correctly.

Training therefore consists of presenting known examples to the input
layer (for example, a pattern of bits corresponding to a handwritten digit
‘9’) and comparing the pattern of activations in the output layer with the
desired pattern – which is that one and only one output unit is activated. To
carry out backpropagation, the ‘error’ (the difference between the actual and
the desired output patterns) is calculated. The weights of the connections
leading into the output layer are then adjusted slightly to reduce the error.
Then the weights on the connections leading to the hidden layer units are
modified, according to the contribution that each unit’s activation has made
to the output error. This is done by multiplying each weight on a connection
from a hidden unit by the magnitude of the error on the output unit to which
it runs. Summing all these error quantities gives a value for the total error
produced by that hidden unit. It is this sum that is used to adjust the weights
of the connections leading into the hidden unit. The amount by which the

222 Learning and evolutionary models

connection weights are adjusted depends on four factors: the derivative of
the activation function (the amount by which the output changes for a small
change in input); the magnitude of the error; the learning rate (a constant
which controls how fast the network learns); and a momentum (which is
proportional to the size of previous weight changes). Using all these factors
has proved by experience to be an effective way of adjusting weights to allow
a network to learn quickly.

For the sake of simplicity this description has only considered the task
of recognizing stimuli such as handwritten digits. This kind of application
is the most common use of neural nets. They have also been employed for
recognizing human speech, tracking trends in stock market data, recognizing
representations of objects in video images and even selecting recruits using
data taken from application forms. In addition to these practical applications,
neural networks can also serve as potentially interesting models for social
processes. In the next section we shall introduce two such models: one
which explores the first steps in the development of language and one which
illustrates how altruistic behaviour can be generated by apparently self-
interested agents.

Using artificial neural networks for social simulation

Learning a lexicon

People communicate through a shared lexicon. By ‘shared lexicon’ we mean
that two speakers of the same language employ the same symbols (sounds
or written representations) to ‘mean’ the same things. For example, suppose
that there are three coloured blocks on the floor and I want to tell you to pick
up the blue block. In order to communicate this to you, it would be useful
to have a language that included the symbol ‘blue’ and for both you and
I to think that ‘blue’ referred to the colour blue (rather than, for instance,
you describing the green block as ‘blue’ or failing to notice that there is any
significant difference between the blocks). There are two basic conditions
for communication using language to succeed: first, there must be sufficient
symbols to make the necessary distinctions; and second, the symbol used
for a particular concept must be the same for all users. As Hutchins and
Hazlehurst (1995: 161) put it: ‘A shared lexicon is a consensus on a set of
distinctions.’

Although the idea of a shared lexicon applies most clearly to the words
of a language, there are many other areas of social life where the same

Using artificial neural networks for social simulation 223

considerations arise. When people make status distinctions based on visi-
ble attributes such as fashion or race, these depend on the availability of
symbols (for example, miniskirt and calf-length skirt) and a consensus about
their significance. A number of linguists, developmental psychologists and
sociologists have asked how such shared lexicons arise. The most extreme
version of this problem can be stated thus: imagine a group of agents without
a shared lexicon who wish to communicate. How could they develop a
common language ‘from nothing’, without any external agency teaching
them the words and their meanings? This is the problem to which Hutchins
and Hazlehurst (1995) propose a solution using a model based on interacting
artificial neural networks.

The networks they use are of a special type calledauto-associators.
These are networks for which the desired output pattern is exactly the same
as the presented input pattern. An auto-associator network is trained on
a large set of examples until its outputs precisely reproduce the training
examples applied to its inputs. When trained, the pattern of activations of the
hidden layer units turns out to be an efficient encoding of any regularities
in the input data. In other words, the hidden units are able to distinguish
the critical features which distinguish the inputs into different types. This
is valuable for the development of a lexicon, because these encodings could
correspond to the different symbols that would be used to describe the inputs.

Hutchins and Hazlehurst develop this idea by using one auto-associator
network to model each agent in a communicating population. The networks
have one input layer (consisting of 36 units), two hidden layers of four
units each, and one output layer, also of 36 units. The inputs to the net-
work are thought of as encodings of visual scenes (the input layer is the
agent’s ‘eyes’). The second hidden layer’s activations are considered to be
the agent’s verbal representation of the input visual scene, that is to say,
the symbol it generates for each scene (Figure 10.3). This layer is therefore
called the verbal input/output layer. In training the networks, each input layer
is presented with 12 binary patterns of 36 bits, corresponding to encodings
of 12 visual scenes (phases of the moon in their example). A trained network
is able to make distinctions between these 12 scenes and reflect these in the
patterns of activation in the verbal input/output layer. If we simply gave the
same set of binary patterns representing the 12 scenes to a number of such
networks, each would learn how to make distinctions between the scenes,
but the ‘verbal output’ of each would be different (the precise pattern for
each scene would depend on the particular random starting configuration of
connection weights). The agents could all ‘talk’ about the scenes, but they
would all be using different lexicons and could not communicate.

224 Learning and evolutionary models

Figure 10.3: An agent’s network (taken from Hutchins and Hazlehurst 1995)

Input Layer
(36 units)

Hidden
Layer
(4 units)

Output Layer
(36 units)

Verbal
Input/
Output
Layer
(4 units)

To represent interaction between agents, Hutchins and Hazlehurst en-
sured that during the training session, the ‘error’ used in backpropagation
came not only from the usual comparison of input and output activation
patterns, but also from comparing the activations at the verbal input/output
layers of pairs of agents. Two agents were chosen at random and each given
the same scene to ‘look at’. Because the networks are auto-associators, the
output of a trained network should be identical to the input pattern. The
error was calculated by finding the difference between the input and output
in the normal way. The difference between the agents’ verbal input/output
layers was also calculated and added to the normal error and this total error
used for backpropagation. As a result, the networks not only tended towards
generating a representation at the output layer which was more like the input
stimulus, but also tended towards adopting the same shared characterization
of the inputs at the verbal layer. In short, the networks learned both to
make distinctions between the scenes applied as input, and to use the same
‘symbols’ in order to make those distinctions.

Figure 10.4 illustrates the results of the simulation graphically showing
the state of four agents after 2000 interactions between pairs of agents.
The graphs show the activation levels of each of the four verbal layer units

Using artificial neural networks for social simulation 225

Figure 10.4: The state of four agents after having learnt the moon lexicon
(from Hutchins and Hazlehurst 1995)

Verbal Output Units

M
oo

n
Sc

en
es

Verbal Output Units

M
oo

n
Sc

en
es

Verbal Output Units

M
oo

n
Sc

en
es

Verbal Output Units
M

oo
n

Sc
en

es

for each of the 16 moon scenes arranged in arbitrary order. The point to
note about these graphs is that they are almost identical, meaning that each
agent has adopted the same ‘symbol’ (pattern of verbal layer activations)
for each of the moon scenes. However, the particular symbol adopted by the
‘language community’ to represent a given moon scene is entirely arbitrary
(depending on the chance allocation of weights at the beginning of the
training) and will differ from run to run. It seems reasonable to say that
the agents have collectively developed a (very simple) languageab initio
without any initial external linguistic resources. One might want to refine
the model to see whether the agents can generate not only lexical items,
but also syntax (that is, ‘grammar’). This would probably involve a more
complex task than the ostensive description of a small number of scenes (see
Hurfordet al.1998b, Cangelosi and Parisi 2001 and Christiansen and Kirby
2003 for recent reviews of work on the evolution of language). One could
imagine building artificial societies in which agents exchanged commands or

226 Learning and evolutionary models

engaged in negotiation, again developing the necessary language resources
from within the interaction itself.

In Hutchins and Hazlehurst’s model, the agents learned a lexicon, which
emerged from their interaction. In the next example, we see how altruistic
behaviour can emerge from interactions between neural networks. This sec-
ond example will also set the scene for the description of genetic algorithms
in the second half of this chapter.

Learning to be altruistic

Parisi et al. (1995) experimented with a population of 100 agents, each
represented by a neural network. The agents were divided into 20 groups
of five ‘sisters’. At the beginning of the simulation all the sisters in a group
had identical connection weights. Every agent was given the same number
of pieces of food at the start of its life. During the course of each agent’s
fixed lifespan, it encountered other agents at random and could decide to
give away or keep pieces of food. At the end of the lifespan (during which
time each agent had been involved in 100 encounters), the 20 agents with
the highest number of pieces of food in their possession were selected and
reproduced five times each to form a new generation of groups of sisters. All
the first-generation agents were then discarded.

An agent’s decision about whether to give away a piece of food is
controlled by its neural network. The network is very simple, consisting of
two input units, three hidden units and one output unit. The input stimulus
is the type of partner in the encounter: either the partner is a sister or it is
not. The output indicates whether the agent will give the partner a piece of
food or not. When a network is reproduced to form the next generation, the
connection weights are copied from a parent to its offspring, but with small
random changes (‘mutations’). In a standard artificial neural network, the
connection weights are changed by the backpropagation of error. Parisi’s
networks did not use backpropagation; instead the weights evolved through
generations of agents.

The simulation was run for 50 generations. One might expect the network
weights to evolve so that all the outputs represented a decision not to give
away a piece of food in any encounter. In this way, agents would retain their
initial allocation and possibly gain additional food from other agents. This
‘egotistical’ behaviour was indeed observed for agents encountering those
other than their sisters. However, the agents also evolved altruistic behaviour
towards their sisters, that is, they tended to give their food to sisters when

Designing neural networks 227

they encountered them. This initially surprising behaviour is predicted by
kin-selection theory (Hamilton 1964). For a food giver, the decrease in the
chance of being selected for reproduction as a result of retaining less food
is compensated by the increase in the chance of the food’s recipient being
selected for reproduction. Since the recipient is a sister (and therefore has the
same pattern of weights as the donor), the effect is to maintain the family’s
reproduction chances.

In this model, therefore, the individual agents act on the basis of deci-
sions controlled by a neural network. However, instead of the connection
weights in the network being set by the results of an extensive training
programme, the weights are evolved over successive generations. The set of
weights of a ‘fit’ network has more chance of being reproduced in the next
generation than the weight set of a less fit agent. In the simulation, a fit agent
is one that has weights that favour altruistic behaviour towards the agent’s
kin, that is, towards networks with the same set of connection weights as the
donor.

Designing neural networks

Neural networks come in all shapes and sizes and designing a good one is an
art rather than a science, where ‘good’ means one that will learn efficiently
with a reasonable set of training examples. Among the parameters that can
be varied are the way in which the inputs are encoded, the number of hidden
layers, the number of units in each layer, the form of the activation function,
the magnitude of the learning rate and momentum constants, and the way in
which the error is calculated. In this section we shall briefly discuss some
of these parameters, offering advice on how a choice can be made when
building network models.

Data encoding

As we saw in the lexicon-learning example where the data consisted of
‘moon scenes’, there is usually a need to encode the inputs into a form
suitable for activating the input layer. Input data can be classified as con-
tinuous or having a very large number of possible values (examples are
wealth, number of interactions with other agents); categorical (partner is or
is not a sibling, one of 12 moon scenes); or having features (the data item is
blue, heavy and has a sweet taste). Continuous values can be scaled to fall

228 Learning and evolutionary models

between zero and one and then input directly, or converted into categories
by distributing them into discrete ‘bins’ according to their magnitude. Cat-
egories can be coded by assigning one input unit to each possible category.
For example, a unit can be assigned to each cell of a visual grid, the unit
receiving an activation of one if its grid cell is black and zero if it is white.
Features are best coded in binary with units assigned to each binary position.
For example, if a feature can be one of eight possible colours, each colour
is assigned a binary number between zero and seven, and three units are
activated according to the binary representation of the colour of the item
under consideration.

Number of hidden layers

The number of hidden layers required depends on the complexity of the
relationship between the inputs and the outputs. Most problems only require
one hidden layer and if the input/output relationship is linear (able to be
represented by a straight-line graph), the network does not need a hidden
layer at all. It is unlikely that any practical problem will require more than
two hidden layers.

Number of units in each layer

The numbers of units in the input and output layers depend on how the data
are encoded. For example, if the input is coded into ten categories, there
needs to be ten units in the input layer. Similarly, if five types of input are to
be recognized and distinguished, the output layer will need to consist of five
units. Deciding the number of hidden units is considerably more difficult. A
number of rules of thumb and estimation procedures have been developed
to give rough guides (see Swingler 1996: 55). For example, the number of
hidden units should never exceed twice the number of input layer units.
If the problem consists of feature extraction (as did the language-learning
example), there should be considerably fewer hidden units than input units.
Ideally, there should be one for each feature, but this number may not be
known in advance.

Neural networks have the ability to recognize input that is not identical
to any of the training examples, but only similar. That is why, for instance,
neural networks have been used for handwriting recognition. A network can
be trained to recognize the digit ‘9’ by presenting many examples of the digit

Designing neural networks 229

from different writers. However, it is unlikely that the next ‘9’ presented
will be identical to any of the ‘9’s it has previously seen, even after the
network has been extensively trained. Nevertheless, because neural networks
are capable of a degree of generalization, it is still possible for the network
to recognize the new ‘9’ correctly.

A network should not over-generalize, however. A handwritten digit ‘7’
should not be recognized as a ‘9’ even though the two figures are similar.
The aim is to permit a certain amount of generalization, but not so much
that recognition errors are introduced. The main way in which the degree
of generalization can be controlled is through the number of hidden units
in the network. As the number of hidden units is increased, the accuracy
of input recognition increases, but the capacity for generalization decreases.
When the number of hidden units approaches the number of different input
examples, the network can recognize every different example exactly, but
has no ability to generalize.

Measuring ‘error’

As we saw earlier, a network develops by adjusting its weights to minimize
the difference between the activation levels of its output units and the target
levels from the training data. The usual measure of error is a simple differ-
ence between output and target level, calculated separately for each output
unit. In addition, it is often useful to assess the overall success of a network
in recognizing an input. This is commonly measured by the root square error,
the square root of the sum of the squared errors from each output unit.

As the network learns, the root square error should gradually decrease.
Eventually, when ‘enough’ training examples have been presented to the
network, the rate of decrease of root square error should level off: there
is little further improvement in error no matter how many further training
examples are provided. The set of weights should then be optimal. Unfortu-
nately, however, it is possible that this may only be a ‘local minimum’, rather
than the true optimum. At a local minimum, any small adjustment to the
weights makes the recognition worse and the network weights remain stable.
However, there may be a completely different set of weights, the ‘global min-
imum’, which has a much better performance. This global minimum cannot
be found by a training procedure that depends on incrementally adjusting
weights. Various techniques have been proposed to try to avoid networks
settling into local minima, but the only reliable procedure is to repeat the
training exercise several times using the same network and different initial

230 Learning and evolutionary models

sets of random weights, checking that the final set of weights is the same
each time. If they are, this suggests that the same minimum is being obtained
using approaches from several different directions and therefore it is likely
that the minimum is indeed global.

Evolutionary computation

The biological metaphor

Artificial neural networks are models that are based loosely on a theory
of how brains work. Nevertheless, as we have seen, they can be used for
much more than modelling brains and can represent agents that are capable
of simple learning. Evolutionary computation is also based on a biological
analogy, drawing on the theory of evolution by natural selection. Just as with
neural networks, one can either regard evolutionary computation as a ‘black
box’ that aims to find optimal solutions to complex problems, or one can
take the analogy with evolution more seriously and use genetic algorithms
(GAs) as models of evolving social processes. We shall discuss examples of
both these approaches later in this chapter. First, however, we shall briefly
review the biological basis from which evolutionary computation draw its
inspiration.

In nature, individual organisms compete with each other for resources,
such as food, water and shelter. Individuals of the same species also compete
for mates. Those individuals that are the most successful in surviving and
finding mates (the ‘fittest’ individuals) will be the most likely to produce
offspring, while relatively unsuccessful individuals will have fewer or no
offspring. Each individual has a set of ‘genes’ (composed of DNA in the
cell nucleus) which determine the form of its body and its abilities. Sexual
reproduction involves combining the genes of two parents from the same
species and passing the combination to the offspring. Thus the genes of the
fittest individuals are spread to the next generation. The process of com-
bining parents’ genes can generate new individuals of a type not previously
found in the population and these new individuals may be even fitter than
either of the parents. In this way, a species evolves to become more and
more suited to its environment.

Biologists use a number of special terms, in describing evolution, which
have been taken over (with slight modification to their meaning) by re-
searchers using evolutionary computation. Chromosomes in biology are
chains of DNA found in the cell nucleus. They are composed of sequences

Evolutionary computation 231

of genes, each of which occupies a fixed place on the chromosome (the
gene’s locus) and provides the code for one or more related functions.
The complete set of chromosomes is an organism’sgenome. The overall
genetic composition of an individual is known as itsgenotype, while the
characteristics of an individual expressed by its genome are known as its
phenotype. For example, I have a Y chromosome consisting of several genes
as part of my genome which causes my sex to be male, an aspect of my
phenotype.

There are several important points about biological evolution that need
emphasizing. First, it is the population as a whole that evolves, not the
individuals. One can judge the adaptation of a species to its environment
only by looking at characteristics of the population, not at any particular
individual (an individual may be quite different from the general population
of which it is a member). Second, evolution can only work while diversity
exists in the population. Without diversity, all individuals will have the same
fitness and there can be no increase in fitness from combining parents’ genes.
Third, while species are adapting through evolution to the environment, that
environment may itself be changing, perhaps as a result of the activity of
the population itself or the evolution of other species. Fourth, skills or other
attributes that individuals acquire during their lifetime are not passed on to
their offspring. Only genetic material is inherited (the idea that ‘acquired
characteristics’ can be inherited is known as Lamarckism and, although not
biologically realistic, could be of interest for social simulation; Reynolds
1994).

The genetic algorithm

Genetic algorithms take the essential aspects of this picture of biological
evolution and represent them as computer models. They work with a popula-
tion of ‘individuals’ each of which has some measurable degree of ‘fitness’.
The fittest individuals are ‘reproduced’ by breeding them with other fit
individuals, to produce new offspring which share some features taken from
each ‘parent’. The parents then ‘die’ and the fitness of the individuals in the
new generation is measured. Once again, the fittest individuals are allowed
to breed and the process continues until the average fitness of the population
has converged to an optimal value.

One area where GAs have been used is in modelling rational action.
Social scientists and especially game theorists have investigated the condi-
tions under which rational actors would engage in cooperation (Elster 1986;

232 Learning and evolutionary models

1989). In some kinds of cooperation, while those who cooperate gain from
doing so, each individual would gain more by not cooperating. For example,
joining a trade union and taking industrial action to obtain a pay rise can
be valuable for each union member, but any one individual may gain more
from remaining outside the union, not paying the union dues but nevertheless
taking the increased pay (Olson 1965). For situations such as these, there is
a problem in explaining how cooperative groups arise and continue because
one would expect that every rational member would defect.

The prisoner’s dilemma is a standard scenario used by social scientists
to investigate collaboration and cooperation. The story is that two prisoners
are held in separate cells. Each prisoner is asked independently to betray the
other. If only one prisoner agrees (‘defects’), this prisoner is rewarded and
the other is punished. If both prisoners defect, both are punished, but to a
lesser extent. If both remain silent (both ‘cooperate’), both receive moderate
rewards. The payoffs for all four possible cases are shown in Figure 10.5
(assume that a payoff of 3 or more is a reward and a payoff of 2 or less
is a punishment). The selfish choice (defection) always yields more than
cooperation, no matter what the other prisoner does, but if both defect,
both do badly. The dilemma is whether to cooperate or to defect. In many
situations, the choice is not made once, but again and again. A trade union
member, for example, will continually be faced with the option of defection.
If the same participants are choosing repeatedly and they think that their
opponents’ previous choices are likely to influence their subsequent choices,
the situation is known as an iterated prisoner’s dilemma.

Figure 10.5: A prisoner’s dilemma payoff matrix

Player B
Cooperate Defect

Reward for mutual B defects and
cooperation A cooperates
A receives 3 A receives 0Cooperate

B receives 3 B receives 5
A defects and Punishment for
B cooperates mutual defection
A receives 5 A receives 1

Player A

Defect

B receives 0 B receives 1

The iterated prisoner’s dilemma can be played as a game between two
players, each following their own strategy, either defecting or cooperating

Evolutionary computation 233

at each turn, and aiming to maximize their own accumulated payoff. The
question for the players is what strategy should be adopted to maximize
their gain. Axelrod (1987) used a GA to evolve a good strategy. Every player
from a population, each with its own strategy, played the prisoner’s dilemma
with all other players. Those that were most successful reproduced to form
the next generation, with the offspring using a strategy formed from the
strategies of the parents.

Axelrod defined a player’s strategy as a rule that determined its next
move, cooperate (C) or defect (D), on the basis of the outcomes of its previ-
ous three games. That is, for every possible combination of ‘cooperate’ and
‘defect’ over the previous three games, the strategy dictated what the player’s
next move would be. There are four possible outcomes for each game (CC,
CD, DC and DD), so there are 4× 4× 4 = 64 different combinations of the
previous three games, and for each combination the strategy indicates what
the next move should be.

When designing a GA, the first problem to tackle is the representation to
be used. For the prisoner’s dilemma game, we need to represent each player’s
strategy as a chromosome, using a coding scheme that will permit it to be
combined with another when breeding new individuals. Since a strategy can
be coded as a set of 64 C or D next moves, one for each possible combination
of the outcomes of previous games, a sequence of 64 bits will serve. There
also needs to be information about how to start the series of games. This
requires six further Cs or Ds in the strategy (one pair for each of the outcomes
of the last three matches), making 70 bits in all. Each of the 70 Cs or Ds
represents one gene in a chromosome 70 bits long.

Axelrod generated an initial population of 20 agents, each with a ran-
domly generated chromosome. Every agent was then pitted against all the
others. The fitness of each agent was measured in terms of its average success
with the other 19 in 151 successive bouts of the prisoners’ dilemma,1 with
each player following its genetically coded strategy. The more successful
individuals were used to breed the next generation and the process was
repeated for 50 generations.

The chromosome determining the strategy inherited by an offspring
was constructed from the chromosomes of its parents using two ‘genetic
operators’: crossover and mutation. Crossover involves taking the two parent
chromosomes, breaking them both at the same randomly chosen location and
rejoining the parts, one from each parent (see Figure 10.6). The procedure
is a very much simplified version of one of the mechanisms involved in the

1There were 151 because this was the number used in previous experiments with hand-
crafted strategies.

234 Learning and evolutionary models

biological recombination of chromosomes. The effect is that the offspring
inherits part of the chromosome from one parent and part from the other.
Mutation then takes place by randomly changing a very small proportion of
the Cs to Ds or vice versa.

Figure 10.6: Schematic diagram of the crossover genetic operator

-
Offspring

Parent B

Parent A
XXXXXXXXXXz

��
����*

Axelrod (1987: 38) notes that the population begins by evolving away
from whatever cooperation was initially displayed. The less cooperative
strategies do best because there are few other players that are responsive
to cooperative overtures. The decreasing level of cooperation in the pop-
ulation causes all the individuals to get lower scores as mutual defection
becomes more and more common. After 10 or 20 generations, the trend
starts to reverse as some players evolve a pattern of reciprocating when they
encounter cooperation and these players do very well. The average scores of
the population therefore start to increase as cooperation based on reciprocity
becomes better and better established. As the reciprocators do well, they
spread in the population, resulting in more and more cooperation.

Axelrod’s model has been taken forward by other researchers, most
notably Lomborg (1996) who used a model involving 1 million agents, each
of which plays iterated prisoner’s dilemma games with a random selection
of other agents. The agents’ strategies develop using an algorithm slightly
different from the standard GA, involving agents copying (‘imitating’) the
strategies of those other agents that they observe to be doing better than
themselves. In the course of the copying, agents can occasionally innovate,
through making random small changes to the other agent’s strategy. In com-
bination, imitation and innovation amount to a population learning strategy

Evolutionary computation 235

not unlike the GA. In addition, Lomborg observes that it is important to
include ‘noise’ in the model if it is to be at all interesting for what it says
about social relations. The noise comes from a small chance that agents
might misperceive their fellow players’ actions (for example, that another
defected when in fact it cooperated). Lomborg finds that in this model,
cooperative strategies are likely to develop, even with substantial amounts of
‘noise’ present. Rather than one strategy coming to dominate the population,
however, the populations develop mixtures of strategies which are stable
together, although they might not be successful alone.

Design issues

In the next subsection we shall work through a program that performs the
genetic algorithm. Schematically evolutionary computation can be repre-
sented by the loop shown in Figure 10.7. For every model that uses a GA,
the researcher has to make several design decisions about how the GA is to
be programmed. This subsection discusses each of these decisions in turn.

Fitness measures The genetic algorithm evolves a population to optimize
some fitness measure. The measure used depends on what is being modelled.
It must be possible to calculate a single numerical indicator of ‘fitness’ for
every individual in the population. Devising a plausible fitness measure is
often the hardest part of designing GAs for social simulation. If the the-
oretical approach being used accepts that actors maximize some externally
observable and calculable ‘utility’, as in many theories of economic rational-
ity, then this utility can be used directly as a fitness measure. For example,
fitness might be based on agents’ accumulated ‘wealth’ (Parisiet al.1995),
on their ‘happiness’ (Chattoe and Gilbert 1996), on the time that they sur-
vive, or on some combination of these and other individual characteristics.
Whatever measure is used, for reasons of computational efficiency it needs
to be possible to calculate it reasonably easily. The evaluation of individuals’
fitness is usually the most demanding part of a GA program because it has
to be done for every individual in every generation.

As the GA proceeds, the average fitness of the population is expected
to increase because individuals with poor fitness are selectively bred out.
Eventually, the rate of improvement in fitness will decline and the population
should converge on the ‘best’ chromosome (see Figure 10.8). The route to
the overall maximum may pass through one or more local maxima, as shown

236 Learning and evolutionary models

Figure 10.7: The evolutionary computation algorithm

Generate N individuals
with random genes

Mutate a small
proportion of the genes
of the new population

Breed new population
by crossover and
copying

Compute individual and
population average
fitness

In more detail:

generate an initial population ofN individuals with random genes
compute the fitness of each individual
repeat

select the fitter individuals and put them into a ‘mating pool’
chooseP pairs of individuals from the mating pool
for each of theP pairs of individuals:

combine the chromosomes of the parents using a crossover
operator to produce two new individual offspring

add the two new individuals to the new population
copyN − P individuals unchanged into the new population
mutate a small proportion (M) of the genes of the new population
dispose of the old population
compute the fitness of each individual in the new population
compute the mean fitness of the population

until the average fitness of the population is no longer increasing

in the figure, after which the fitness of the best individual decreases for short
periods (for example, from generation 6 to 7).

Evolutionary computation 237

Figure 10.8: A typical run of a genetic algorithm, showing the decreasing
rate of improvement of fitness and the average fitness (thick line) approach-
ing the fitness of the best individual (thin line)

Generation
4 03 02 01 00

Fitness2 0 0

1 5 0

1 0 0

5 0

0

Selection mechanisms The reason why the GA optimizes is that breeding
is carried out from the fitter individuals. The choice of parents to produce
offspring is somewhat more subtle than it might appear. Simply choosing the
very best individual and breeding from that will not generally work success-
fully, because that best individual may have a fitness that is at a local rather
than a global maximum. Instead, the GA ensures that there is some diversity
among the population by breeding from a selection of the fitter individuals,
rather than just from the fittest. Various ways of choosing those to breed have
been devised (Goldberg and Deb 1991), but the commonest and simplest is
called tournament selection. Pairs of individuals are picked at random and
the one with the higher fitness (the one that ‘wins the tournament’) is used
as one parent. The tournament selection is then repeated on a second pair of

238 Learning and evolutionary models

individuals to find the other parent from which to breed.
In order to maintain some of the better chromosomes unchanged across

generations, it is usual to have only a proportion of the new population bred
as offspring from parents. The remainder of the new generation is simply
copied from the old, again using tournament selection to pick those to be
copied. Typically, 60 per cent of the new population are bred from parents
(the P individuals of Figure 10.7) and the remaining 40 per cent continue
from the old population.

Genetic operators The most important genetic operator is crossover, the
process of taking two chromosomes, snipping them both at the same ran-
domly chosen position, and then choosing one end from each (Figure 10.6).
This is single-point crossover; it is also possible to cross at two points,
by considering the chromosome to be a continuous loop and snipping it
at two random places, thus creating two segments to exchange from each
chromosome. Experiments on these and other variations indicate that the
crossover design chosen is often not critical. What is important is that the
crossover operator should preserve contiguous chunks or ‘building blocks’
of genes from one generation to the next.

The importance of these building blocks or segments of genes is that
they represent parameter values that the algorithm has discovered work
well together and which lead to improved fitness when incorporated into
an individual. The GA works well as an optimizer because the crossover
operator is able to preserve the blocks once they have been ‘discovered’.
When designing a scheme for coding a model’s parameters as genes, one of
the issues that needs to be borne in mind is the degree to which it encourages
the formation of these ‘building blocks’. This can be done by ensuring that
related genes are close together in the chromosome and that the contribution
of a gene to the fitness of the individual is relatively independent of the
values of the other genes elsewhere in the chromosome. The extent to which
the contribution to fitness of one gene depends on the values of other genes
is known asepistasisand this should be low for the GA to work most
effectively. We shall return to the design of gene coding schemes later in
this chapter.

The other common genetic operator is mutation. As a population evolves,
there is a tendency for some genes to become predominant until they have
spread to all members. Without mutation, these genes will then be fixed for
ever, because crossover alone cannot introduce new gene values. If the fixed
value of the gene is not the value required at the global maximum, the GA
will fail to optimize properly. Mutation is therefore important to ‘loosen up’

Evolutionary computation 239

genes that would otherwise become fixed, but if the mutation rate is too high,
the selection pressure on genes resulting from breeding with fitter individuals
is counteracted. A common value for the mutation rate is to change one gene
in every thousand.

Population size Although biological evolution typically takes place with
millions of individuals in the population, GAs work surprisingly well with
quite small populations. Axelrod used only 20 individuals in the study
described earlier in this chapter and success has been reported with as few
as ten individuals (Reeves 1993). If the population is too small, there is an
increased risk of convergence to a local maximum and the rate of conver-
gence may be reduced. A rule of thumb is that the product of the number
in the population and the number of generations should exceed 100,000. In
addition, the number of individuals in the population should considerably
exceed the number of genes in each individual’s chromosome.

Implementation

In this section the coding of a genetic algorithm will be illustrated by
working through a re-implementation of the model described in Axelrod
(1987) and mentioned above. In this model, agents play repeated prisoner’s
dilemma matches against each other, using a strategy encoded in 70 bits. The
agent strategies are subjected to a genetic algorithm, with the payoff from the
matches as the measure of fitness. According to Axelrod, we should expect
the strategies of all the agents to co-evolve until there is almost universal
cooperation.

The model can be divided into two parts. The first implements a typ-
ical GA and uses the algorithm of Figure 10.7 to improve the fitness of
the agents’ strategies. The second part implements the prisoner’s dilemma
matches between agents and reports agents’ average payoffs as their fitness
to the GA. The two parts can be coded more or less independently, with just
a call from the GA to the fitness function as the communication between
them.

First, however, we must specify the agents to use. We shall show how
the model can be implemented in NetLogo (see Chapter 7) with agents
represented as ‘turtles’. Each turtle possesses a chromosome: a list of 70 ones
and zeroes. Each turtle will also need to note its fitness and the generation in
which it was created (its ‘cohort’). When it engages in a match with another
turtle, its choice of whether to cooperate or defect depends on the outcomes

240 Learning and evolutionary models

of its last three matches with the same opponent and so it needs to remember
these.

This suggests the following attributes for turtles:

turtles-own [
chromosome ; a list of ones and zeroes
fitness ; the fitness of this turtle
cohort ; the generation this turtle was born in
; History of encounters, coded thus:
; Me: Cooperate Opponent: Cooperate - code = 3
; Me: Cooperate Opponent: Defect - code = 2
; Me: Defect Opponent: Cooperate - code = 1
; Me: Defect Opponent: Defect - code = 0
outcome ; the outcome of the last match
last-outcome ; the outcome of the previous match
last-but-one-outcome ; the outcome of the match before that
]

There will need to be some variables accessible throughout the program:

globals [
number-of-turtles ; the number of agents (turtles)
chromo-length ; the length of a chromosome (the number

; of bits)
mutation-rate ; average number of mutations per

; chromosome per generation
generation ; count of generations
]

The first three of these define the size of the problem.2

With these preliminaries out of the way, we can turn to the GA itself.
The setup procedure initializes the global variables and creates the first
generation of turtles. Each turtle is given a randomly generated chromosome.
Then the turtles are added to the NetLogo graphic display and the fitness of
each agent calculated (the method used to do this will be shown below).

to setup ; observer procedure.
clear-turtles
clear-all-plots

2It is a good idea to put numbers such as these into global variables and then refer to
them, rather than use the numbers themselves within the program. Then if, for example, you
want to experiment with a larger number of agents, only one number needs to be changed.

Evolutionary computation 241

set generation 0
set chromo-length 70
set number-of-turtles 20
set mutation-rate 0.5

create-custom-turtles number-of-turtles [
set cohort 0
; make the chromosome a list of random 0s and 1s
set chromosome n-values chromo-length [random 2]
]

ask turtles [
find-fitness
display-turtles
]

end

Thego procedure follows the algorithm of Figure 10.7 closely. Sixty per
cent of a new generation of the population of agents are bred by ‘mating’
pairs of ‘parents’. The remaining 40 per cent are copied unchanged from
the old to the new generation. The mating first chooses two parents, using a
tournament selection coded inselect-a-turtle, performs a crossover be-
tween the parents, and then generates two new turtles for the new generation.

Once all the new generation have been bred, the old generation are
disposed of (with thedie command), a small amount of mutation is applied
and the fitness of the new generation is calculated. Finally, the generation
count is incremented, the current fitness is plotted on the display and the
simulation continues until generation 50 has been reached.

to go ; observer procedure.
locals [turtleA turtleB]
; Breed 60% of the new population and mate them to
; produce two offspring
repeat (0.3 * number-of-turtles) [

set turtleA select-a-turtle
set turtleB select-a-turtle
ask turtleA [cross turtleB]
breed-a-turtle turtleA
breed-a-turtle turtleB
]

; Just copy 40% of the population into the
; new generation
repeat (0.4 * number-of-turtles) [

242 Learning and evolutionary models

breed-a-turtle select-a-turtle
]

; Kill off the old generation
ask turtles with [cohort = generation] [die]
; Mutate the new generation, display them, and
; find their fitness
ask turtles [

mutate
display-turtles
find-fitness

]
set generation generation + 1
plot-results
if (generation = 50) [stop]

end

The tournament select simply chooses two turtles at random from the
current generation and selects the one with the higher fitness for breeding.
This biases the selection of agents for reproduction towards those with
greater fitness, but also allows for variation within the population. Breeding
a turtle is also straightforward: the child turtle receives a copy of its parent’s
chromosome.

to-report select-a-turtle ; turtle procedure.
; Use a tournament selection.
; The turtle reported is the
; fitter of two chosen at
; random.

locals [turtleA turtleB]
set turtleA

random-one-of turtles with [cohort = generation]
set turtleB

random-one-of turtles with [cohort = generation]
ifelse (fitness-of turtleA > fitness-of turtleB)

[report turtleA]
[report turtleB]

end

to breed-a-turtle [parent] ; turtle procedure.
; Make new turtle and give it
; the genes of its parent
; turtle.

create-custom-turtles 1 [

Evolutionary computation 243

set cohort generation + 1
set chromosome chromosome-of parent
]

end

The crossover procedure (see Figure 10.6) takes two chromosomes, ran-
domly selects a cut-point within the length of the chromosome and swaps
the genes between the chromosomes from the start to that cut point. The
mutation procedure randomly chooses a location within the chromosome
and flips the gene value from 1 to 0 or vice versa.

to cross [mate] ; turtle procedure. Exchange a chunk of my
; and my mate’s chromosomes by swapping
; the genes from the beginning to a
; randomly chosen stopping place

locals [place my-gene your-gene]
set place 0
repeat random (chromo-length) [

set my-gene (item place chromosome)
set your-gene (item place chromosome-of mate)
set chromosome

(replace-item place chromosome your-gene)
set chromosome-of mate

(replace-item place chromosome-of mate my-gene)
set place place + 1

]
end

to mutate ; turtle procedure. Flip a bit with
; a probability of 1 in 1/mutation-rate

locals [place old new]
set place (random (chromo-length / mutation-rate))
if (place < chromo-length) [

set old (item place chromosome)
ifelse (old = 0)

[set new 1]
[set new 0]

set chromosome (replace-item place chromosome new)
]

end

That completes the code for the GA itself. All that remains is to show
how the fitness of agents is calculated. This closely follows Axelrod’s

244 Learning and evolutionary models

method. The procedurefind-fitness is called for each turtle in turn.
This organizes a game between the turtle and each other turtle, collecting
the payoffs received (see Figure 10.5 for the payoff matrix) and setting the
turtle’s fitness to the average payoff per turtle opponent.

to find-fitness ; turtle procedure. Report my fitness.
; This procedure will change according to
; the problem that the Genetic Algorithm
; is expected to solve.

; play a sequence of prisoner’s dilemma encounters with
; every other turtle
locals [total-payoff]
set total-payoff 0
; note that here we are asking another turtle to play a game
; against me, so, confusingly, the ’other’ turtle in play-game
; is me (this only has consequences for the arrangement of the
; payoff matrix)
ask turtles with [self != myself] [

set total-payoff total-payoff + play-game myself
]

set fitness total-payoff / (count turtles - 1)
end

A game consists of 151 matches with the same opponent. For each match,
the turtle works out whether to cooperate or defect according to the history of
the last three matches and the turtle’s strategy, encoded in its chromosome.
Because at the beginning of the sequence, there are no previous matches, the
last six bits of the turtle’s chromosome are used to indicate ‘hypothetical’
prior outcomes. This means that at the beginning of each game, the turtle has
to fill in its history with these outcomes from its chromosome and this is done
by thesetup-game procedure, which encodes the bits from its chromosome
and copies them into the three outcome variables.

to-report play-game [other] ; turtle procedure.
; Play a game against the
; ’other’ turtle

locals [winnings]
set winnings 0
setup-game
ask other [setup-game] ; A game is a sequence of 151

; matches with the same opponent

Evolutionary computation 245

repeat 151 [set winnings winnings + (play-match other)]
report winnings

end

to setup-game ; turtle procedure. Set up the
; three outcomes which
; hypothetically preceded the
; game using bits
; from the end of the chromosome

set last-but-one-outcome
2 * (item (chromo-length - 6) chromosome) +
item (chromo-length - 5) chromosome

set last-outcome
2 * (item (chromo-length - 4) chromosome) +
item (chromo-length - 3) chromosome

end

Playing a match consists of working out the turtle’s own move (Cooper-
ate or Defect), asking the opponent to do the same, recording the outcome in
the turtle’s own history of the last three matches (and getting the opponent
to do the same in its history) and finally working out the payoff.

to-report play-match [other] ; turtle procedure.
; Using my strategy and the
; previous outcomes, find my
; move and the same for the
; other. Record the outcome
; and report the payoff

locals [my-move other-move]
set my-move find-move
ask other [set other-move find-move]
record-history my-move other-move
ask other [record-history other-move my-move]
report payoff my-move other-move

end

to-report payoff [my-move other-move] ; turtle procedure
; Report the payoff from my
; and the other’s move,
; using the payoff matrix
; 1 = cooperate 0 = defect

locals [payoff]
ifelse (my-move = 1 and other-move = 1) [set payoff 3]

246 Learning and evolutionary models

[ifelse (my-move = 1 and other-move = 0) [set payoff 5]
[ifelse (my-move = 0 and other-move = 1) [set payoff 0]
[set payoff 1]

]
]

report payoff
end

Finding the right move to make is a matter of looking up the correct bit in
the chromosome, indexed by the last three outcomes. The indexing is done
by noting that there are four possible outcomes (Cooperate/Cooperate; Co-
operate/Defect; Defect/Cooperate; and Defect/Defect) and three sequential
outcomes to take into account.

to-report find-move ; turtle procedure.
; Use my strategy and the
; last three match outcomes,
; report my next move
; (cooperate (1) or defect (0))

locals [place]
set place

(((last-but-one-outcome * 4) + last-outcome) * 4) + outcome
report item place chromosome

end

Once both the turtle’s own and the opponent’s moves have been made,
this outcome can be recorded in the turtles’ histories and this is done by the
record-history procedure.

to record-history [my-move other-move] ; turtle procedure
; remember the outcome from
; this match

set last-but-one-outcome last-outcome
set last-outcome outcome
set outcome 2 * my-move + other-move

end

There remains only some procedures related to displaying the agents on
the NetLogo user interface.

to colour-turtle ; turtle procedure. Set the
; colour of the displayed turtle,
; using the binary value of

Evolutionary computation 247

; the chromosome to index the
; colour scale

set color wrap-color reduce [?1 * 2 + ?2] chromosome
end

to display-turtles ; turtle procedure. Display the
; turtle on the perimeter of
; a circle

colour-turtle
set heading who * (360 / number-of-turtles)
fd 10

end

to plot-results ; observer procedure. Plot the current
; mean fitness

set-current-plot "Fitness"
set-current-plot-pen "average"
plot mean values-from turtles [fitness]

end

A typical run (Figure 10.9) shows the average fitness of the agents de-
creasing at first, as the population evolves from the random initial outcomes.
However, after about 25 generations, the agents begin to co-evolve strate-
gies that reciprocate the cooperation that they get from other agents, and
these pairs of cooperating agents do very well and drive the average fitness
sharply upwards. Since these agents have high fitness scores, they become
the parents of the next generation. In this way, the fitness score gradually
increases until it approaches 453 – the score when all agents are cooperating
all the time. Some variation remains because even after all agents inherit a
chromosome for a cooperative strategy, mutation ensures that there will be
some defectors in the population.

Developments and variations on evolutionary computation

We have so far been considering only the classical GA, but there are also
a number of important variations and extensions, some of which are more
useful for social simulation than the classic form. The variations concern
what is represented in the individuals’ genes and the details of the process of
evolution. We shall consider the issue of representation first.

248 Learning and evolutionary models

Figure 10.9: A typical run of the re-implementation of Axelrod’s model,
plotting the average fitness of the agents by generation

REPRESENTATION

The classical GA codes the attributes of individuals in a chromosome con-
sisting of a sequence of bits in a binary sequence. In this, it diverges from
the biological analogue, since DNA uses a fourfold coding scheme: each
base can be one of four possible nucleotides – adenine, thymine, cytosine
and guanine. Because any information can be coded into a binary string,
attention could be confined to binary chromosomes, but two alternatives are
convenient and useful: genes consisting of real numbers and genes consisting
of computer programs.

Real numbers For many problems, the parameters that are to be encoded
in the chromosome are ordinary real (floating-point) numbers, rather than
binary, and it is more efficient to construct chromosomes from these directly,
rather than having to code them into a binary representation first. The GA
works exactly as before, with the exception of the mutation operator. Stan-
dard mutation involves ‘flipping a bit’ from one to zero or vice versa; this

Evolutionary computation 249

is not possible if the gene consists of a real number. Instead, to implement
mutation a small random number (taken from a normal distribution with
zero mean and with standard deviation similar to the standard deviation of
the parameter in the population) is added to a small proportion of the genes.

Programs When agents are evolved using the classic GA, the genes en-
code the values of the parameters which direct the agents’ activity. The pro-
gram controlling each agent always remains the same, although the parame-
ter values will vary from individual to individual. For example, in Axelrod’s
model, agents evolved different strategies for playing the prisoner’s dilemma
game, but the differences between agents consisted only of what the next
move – cooperation or defection – would be. An alternative approach is to
allow the agents’ controlling programs to evolve directly, by encoding the
program itself, not just some parameters, in the chromosome. This technique
is known as genetic programming (Koza 1992; 1994).

For example, suppose that we wanted to evolve an agent that can do
simple personal budgeting, that is, an agent which is capable of deciding on
what it wants to buy from a regular income – food, accommodation and so on
(Chattoe and Gilbert 1997). The chromosome of such an agent will encode a
program which uses the agent’s ‘bank balance’, current stocks of goods and
strength of ‘needs’ as inputs and produces a purchasing decision as output.
A program of this kind could consist of nothing more than a formula made
up of variables representing the bank balance, the stock levels and the needs,
linked by arithmetic operators such as addition, subtraction, multiplication
and division, and a comparison operator. To work out what to buy at any
moment, the agent would apply the formula, substituting current values of
the variables in order to assess the amount of each commodity to buy (see
Figure 10.10 for an example of such a formula).

To start the evolutionary process, each agent is given a chromosome
representing a random formula: a random assortment of variables and op-
erators, but constructed so that it is syntactically correct. While few of the
agents will do a good job of budgeting with their initial formulae (most will
run out of money before satisfying many of their needs and will ‘starve
to death’), breeding new formulae from the best in the population will
eventually improve the average performance.

The main difference between genetic programming and the classical
genetic algorithm is that the crossover and mutation operators used for
genetic programming have to be designed to ensure that the program repre-
sented by the chromosome always remains syntactically correct. One way to
achieve this is to represent the program as a tree (Figure 10.10) and perform

250 Learning and evolutionary models

Figure 10.10: Tree and conventional functional representation of a formula
for deciding whether to purchase a good, evolved by genetic programming

PPPPPPPq?

PPPPq
���)

XXXXXXXXXXXXXz

HHH
HHHj

@
@@R

�
�	

Z
Z~

�
��=

H
HHHj

�
�	

���

�
���

���

Price

+

CMP Price

Stock-Level

Stock-Level

Price

× Balance

−

Stock-Level

CMP

2×

−

(- (* (CMP Stock-Level
(- (* Price Stock-Level) Balance))

(+ (CMP Stock-Level Price) Price))
2)

Note:CMP returns 1 if the value of its first argument is greater than
that of its second, 0 if the arguments are equal, or−1 if the first
argument is less than the second.

crossover between two programs by chopping off a randomly chosen branch
from one tree and attaching it to the other at a random location. A tree can
be mutated by randomly selecting an operator or variable and exchanging it
for another. Further details can be found in Koza (1992). Chattoe and Gilbert
(1997) show that using genetic programming it is possible to evolve agents
which are able to budget effectively even in the face of low income and
irregular demands and commitments.

LEARNING CLASSIFIER SYSTEMS

Agents that incorporated production systems – sets of condition-action rules
and a rule interpreter – were introduced in Chapter 8. Although the internal

Evolutionary computation 251

states of such agents (retained in working memory) change as they act on
and react to their environment, the rules themselves remain unchanged. In
learning classifier systems (Hollandet al.1986), the agent is able to improve
its rule set by learning from feedback about its actions. Learning takes two
forms which interact: the relative priorities of rules are modified, so that the
conditions of high priority rules are examined before low priority ones, and
the rules themselves evolve using a form of genetic algorithm.

In a classifier system, the working memory is implemented using ‘mes-
sages’, which are bit strings representing the state of the agent. The condition
parts of rules are also formed of strings of ones and zeroes (and a special
symbol called the ‘don’t care’ symbol, meaning that either one or zero can
match in this position). The rule interpreter works by matching the rules
against each of the messages.

The relative priority of the rules is adjusted using what is called the
bucket brigadealgorithm. All rules are rated according to their specificity,
that is, how few ‘don’t care’ symbols there are in their condition parts. Rules
also have a strength, a value which is adjusted by the interpreter, but which
is initially set at random. The priority of a rule is then proportional to the
product of its strength and its specificity (meaning that strong specific rules
are have higher priority than weak general ones).

At each step, a message is selected from working memory and all rules
which match it are located by the rule interpreter. One of these will have
the greatest priority and this one is chosen to fire. The action part of this
rule will generate a new message, and may also cause the agent to perform
some task in the environment. The rule which did fire pays a ‘tax’ equal to
its priority and this tax is distributed to the rules which created the message
that matched the selected rule. Eventually a rule fires which causes an action
to be performed and instead of getting its reward from successor rule firings,
it gets its reward from the environment, according to the fitness of the
action performed. This algorithm therefore rewards both the rules that are
ultimately effective in performing actions and the rules which generated the
preconditions for those rules – hence the name ‘bucket brigade’, as rewards
are passed back from one rule to its predecessors.

For a learning classifier system, the initial rules can be generated ran-
domly, an easy process since they consist only of sets of ones, zeroes
and don’t care symbols. Then, at infrequent intervals (perhaps once every
thousand time steps), the rules are treated as a population of genes, with
fitness proportional to the rule strength, and new rules are bred from the old
using crossover and mutation. The new set of rules replaces the old and the
bucket brigade algorithm continues.

252 Learning and evolutionary models

THE EVOLUTIONARY PROCESS

What we have called the classical GA was first devised by John Holland
(1975) and was inspired by the processes underlying biological evolution.
At around the same time, or even earlier, other researchers were indepen-
dently developing evolutionary algorithms based on biological metaphors,
and these alternative approaches are still used and have their advocates. They
are worth considering for social simulation if one is creating an explicitly
evolutionary model, rather than using the algorithm as a ‘black box’ opti-
mizer. In the latter case, the classical GA is to be preferred because it is
convenient and better understood and documented than its rivals.

Evolution strategies (ESs) were developed in Berlin in the 1960s to opti-
mize the aerodynamic shapes of solid bodies, a problem requiring the tuning
of several real-valued parameters (Michalewicz 1996: Chapter 8). They
differ from the classical genetic algorithm in not using a crossover operator
and breeding new populations somewhat differently. In a GA, crossover
and mutation operations are applied to randomly selected individuals from
the ‘old’ population (see Figure 10.7), while in ESs, the whole of the old
population is subjected to mutation and then the new population is selected
from this pool of individuals. A consequence is that, while it is possible
for an individual to be selected twice in a GA, this is not possible using
ESs. A second difference between the two approaches is that, in an ES, the
probability of and amount of mutation (that is, the size of the increment
randomly added to a small number of the genes) vary during the evolution,
while the evolutionary operators do not change in most GAs.

As can be seen from this contrast between ESs and GAs, the two ap-
proaches differ mainly in details. The same is true of the third approach,
evolutionary programming (EP), which follows the general design of an
ES, but uses the chromosome to represent a finite-state machine (FSM). An
FSM is a device that, given a sequence of input symbols, produces one or
more output symbols. For example, FSMs have been used as compilers (the
program to compile is the sequence of input symbols and the output is the
machine code used to drive the computer) and to control machines such as
the automatic teller machines that provide cash from your bank account.
An FSM can be thought of as a set of nodes (each representing one of
the states in which the machine can be) linked by arrows representing the
transition from one state to another. Each transition is associated with an
input symbol and possibly an output symbol. For instance, when one has
entered the amount of money to withdraw on a teller machine’s keyboard
(the ‘input symbol’), the machine will change from the state of ‘requesting
the amount to be withdrawn’ to the state of ‘preparing to dispense cash’,

Further reading 253

and the screen might show a message asking the user to wait (the ‘output
symbol’).

FSMs can also be useful as representations of agents: Axelrod’s agents
are FSMs, and the shopping agent used in the example of multi-agent sys-
tems at the end of Chapter 8 is also an FSM, although a complex one. In the
original EP approach (Fogelet al. 1966, see also Fogel 1995), each parent
produces a single offspring by subjecting its own FSM design to random
mutations involving changing the output symbol, changing a state transition,
adding or deleting a state and changing the state at which the machine
is initialized. Then the best individuals are selected from the combined
populations of parents and offspring.

This brief discussion of ESs and EP has shown that the design of the
classical GA is not cast in stone: substantial variations in the algorithm and
the genetic representation can be made in order to provide a better model
or a more efficient method of encoding and yet the algorithm still has a
good chance of converging or exhibiting interesting behaviour. The literature
includes many more variations, such as GAs used evolve the parameters
of artificial neural networks (Beltrattiet al. 1996; Klüver 1998) and an
evolutionary algorithm known as a cultural algorithm which implements the
simultaneous evolution of both individual traits and group beliefs (Reynolds
1994). Nowadays, all these are included as variations of evolutionary com-
putation.

Further reading

The standard reference on artificial neural networks, although now becoming
rather out of date, is

• Rumelhart, D. and McClelland, G. (1986)Parallel Distributed Pro-
cessing, vols. I and II. MIT Press, Cambridge, MA.

A useful text that considers in more detail the practical issues of building
and using neural networks is

• Swingler, K. (1996)Applying Neural Networks: A Practical Guide.
Academic Press, London

and

• Gurney, K. (1997)Introduction to Neural Networks. Routledge, Lon-
don

254 Learning and evolutionary models

explains the technicalities clearly.
A text on using neural networks for social simulation is

• Garson, David G. (1998)Neural Networks: an Introductory Guide for
Social Scientists. Sage Publications, London

and

• Beltratti, A.et al.(1996)Neural Networks for Economic and Financial
Modelling. International Thomson Computer Press, London

offers a brief introduction to both artificial neural networks and genetic
algorithms and shows how the two can be used together to create models
of economic markets.

Implementations of neural networks for tasks such as pattern recogni-
tion, data mining and optimization are available commercially, for exam-
ple from Mathworks as an add-on to MATLAB (Neural Network Tool-
box, seehttp://www.mathworks.com/products/neuralnet/) and from
NeuralWare (http://www.neuralware.com/products.jsp). These sup-
pliers also provide practically oriented user manuals for their products.
However, they are orientated towards the prediction and classification tasks
found in business and are of limited value for social simulation.

Recent textbooks on evolutionary computation are

• Eiben, A. E. and Smith, J. E. (2003)Introduction to Evolutionary
Computing. Springer-Verlag, Berlin.

• Michalewicz, Z. and Fogel, D. (2000)How to Solve It: Modern
Heuristics. Springer-Verlag, Berlin.

• Mitchell, Melanie (1998)An Introduction to Genetic Algorithms. MIT
Press, Cambridge, MA.

• Michalewicz, Z. (1996)Genetic Algorithms + Data Structures = Evo-
lution Programs, 3rd edn. Springer-Verlag, Berlin.

An article that reviews the value of GAs for social simulation is

• Chattoe, E. (1998) Just How (Un)realistic are Evolutionary Algo-
rithms as Representations of Social Processes?Journal of Artificial
Societies and Social Simulation, 1(3):http://www.soc.surrey.ac.
uk/JASSS/1/3/2.html

The original source for the genetic algorithm is

Further reading 255

• Holland, J. H. (1975)Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, MI.

A second edition was published in 1992.
A useful textbook on genetic programming is

• Banzhaf, W.et al. (1998) Genetic Programming: an Introduction.
Morgan Kaufmann, San Francisco, CA

which provides a wide-ranging introduction and descriptions of implemen-
tations.

The original reference for genetic programming is

• Koza, J. R. (1992)Genetic Programming. MIT Press, Cambridge, MA

and three further volumes with the same title.

Appendix A

Web sites

This appendix lists some of the Web sites1 that provide information about
social simulation and related topics. The Web is constantly changing and
so some of the addresses shown below may have gone and others come.
Nevertheless, this list provides a good starting point for exploration.

General

Copies of most of the program code included in this book can be found at
http://cress.soc.surrey.ac.uk/s4ss/

There is an e-mail distribution list for simulation in the social sciences.
To subscribe, fill in your details at the subscription page,http://www.

jiscmail.ac.uk/lists/simsoc.html

Programs, packages and languages

MIMOSE

http://www.uni-koblenz.de/∼moeh/projekte/mimose.html
MIMOSE consists of a model description language and an experimental
framework for the simulation of models. The main purpose of the MIMOSE
project has been the development of a modelling language that considers the

1The longer Web addresses (URLs) below have been broken into two lines to fit them on
the page. When typing them into a browser, do not leave any space between the two parts.

Programs, packages and languages 257

special demands of modelling in social science, especially the description of
nonlinear quantitative and qualitative relations, stochastic influences, birth
and death processes, and micro and multilevel models. The aim is that
describing models in MIMOSE should not burden the modeller with a lot
of programming and implementation details.

MIMOSE was created by Michael M̈ohring of Computer Science Appli-
cations in the Social Sciences, Department of Computer Science, University
of Koblenz-Landau, Rheinau 1, D-56075 Koblenz, Germany.

Release 2.0 requires Sun Sparc (SunOS, Solaris, X11R5/6 or LINUX.
A Java interface is under development and the next release will be usable
with Java-enabled browsers. The current release is usable with Java-enabled
browsers, given that the server process runs on a SunOS or LINUX machine.

NETLOGO

http://ccl.northwestern.edu/netlogo/

NetLogo is a programmable modelling environment for simulating natural
and social phenomena. It is particularly well suited for modelling complex
systems developing over time. Modellers can give instructions to hundreds
or thousands of independent ‘agents’ all operating concurrently. This makes
it possible to explore the connection between the micro-level behaviour of
individuals and the macro-level patterns that emerge from the interaction of
many individuals.

NetLogo lets students open simulations and ‘play’ with them, exploring
their behaviour under various conditions. It is also an authoring environment
that enables students, teachers and curriculum developers to create their own
models. NetLogo is simple enough that students and teachers can easily run
simulations or even build their own. It is advanced enough to serve as a
powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with
a models library, which is a large collection of pre-written simulations that
can be used and modified. These simulations address many content areas
in the natural and social sciences, including biology and medicine, physics
and chemistry, mathematics and computer science, and economics and so-
cial psychology. Several model-based inquiry curricula using NetLogo are
currently under development.

SWARM

http://wiki.swarm.org/

Swarm is a software package for multi-agent simulation of complex systems
developed at the Santa Fe Institute. It is intended to be a useful tool for

258 Web sites

researchers in a variety of disciplines, especially artificial life. The basic
architecture of Swarm is the simulation of collections of concurrently inter-
acting agents: with this architecture, a large variety of agent-based models
can be implemented. It runs on UNIX machines with GNU Objective C and
X-windows: the source code is freely available under GNU licensing terms;
more recent versions use Java and also run on Windows machines.

Swarm is available for download in both source and binary versions.

REPAST

http://repast.sourceforge.net/

RePast is a free software framework for creating agent-based simulations
using the Java language (requires version Java 1.4 or greater). It provides
a library of classes for creating, running, displaying and collecting data
from an agent-based simulation. In addition, RePast can take snapshots of
running simulations, and create quicktime movies of simulations. RePast
borrows much from the Swarm simulation toolkit and can properly be termed
‘Swarm-like’. In addition, RePast includes such features as run-time model
manipulation via graphical user interface widgets.

MASON

http://cs.gmu.edu/∼eclab/projects/mason/
MASON is a free, fast discrete-event multi-agent simulation library core in
Java, designed to be the foundation for large custom-purpose Java simu-
lations, and also to provide functionality for many lightweight simulation
needs. MASON contains both a model library and an optional suite of
visualization tools in 2D and 3D.

SDML

http://sdml.cfpm.org/

SDML is a strictly declarative modelling language with object-oriented fea-
tures specifically designed for modelling tasks in the social sciences. It en-
ables the building of sophisticated simulations involving agents, compound
agents, multiple time levels, complex organizations and so on. Its declarative
logic-based style of programming allows for complete rigour as well as for
the capturing of a mixture of qualitative as well as quantitative aspects.
Although it has a sharp learning curve, once learnt, sophisticated models
of interacting organizations and cognitive agents can be swiftly developed.
For further information contact the Centre for Policy Modelling, Manchester
Metropolitan University. Written by Steve Wallis, original version by Scott

Programs, packages and languages 259

Moss.
SDML is available for UNIX, PC (Windows 3.11 or 95) or Macin-

tosh, and requires 32 Mb of RAM. Commercial users also require Dig-
italk/Parcplace Visual Works, but academic researchers can obtain a version
free from the Centre for Policy Modelling.

SIMPACK

http://www.cise.ufl.edu/∼fishwick/simpack.html
Although Simpack is not specifically oriented towards social simulation, it
supports a wide variety of event scheduling and continuous-time simulation
models.

MAGSY

http://www.dfki.uni-sb.de/∼kuf/magsy.html
MAGSY is a development platform for multi-agent applications. Each agent
in MAGSY has a forward chaining rule interpreter in its kernel. This rule
interpreter is a complete re-implementation of an OPS5 system, further
enhanced to make it more suitable for the development of multi-agent system
applications.

MAGSY runs on UNIX, LINUX, SunOS and Solaris systems.

CORMAS

http://cormas.cirad.fr/en/outil/outil.htm

Cormas is a programming environment dedicated to the creation of multi-
agent systems, specifically for the domain of natural-resources management.
It provides a framework for developing simulation models of coordina-
tion modes between individuals and groups that jointly exploit common
resources. It is written in the programming language Smalltalk.

MADK IT

http://www.madkit.org/

MadKit is a Java multi-agent platform built upon an organizational model.
It provides general agent facilities, such as lifecycle management, message
passing and distribution, and allows high heterogeneity in agent architectures
and communication languages, and various customizations. MadKit commu-
nication is based on a peer-to-peer mechanism which allows developers to
develop distributed applications quickly using agent principles. MadKit is
free and licensed under the GPL/LGPL licence.

260 Web sites

Electronic journals

There are several electronic journals which publish papers relating to com-
puter simulation available on the Web. The most relevant of these is the
Journal of Artificial Societies and Social Simulation, at http://jasss.
soc.surrey.ac.uk/JASSS.html

Others worthy of mention are:

• Complexity International (http://journal-ci.csse.monash.
edu.au/ci/info-journal.html), an electronic refereed journal
including a wide range of papers on complexity theory;
• Complexity Digest(http://www.comdig.org/), a weekly newsletter

about complexity in the natural and social sciences, which includes
links to relevant reviews, notices of articles, conference announce-
ments and so forth;
• Artificial Life Online (http://www.alife.org/), the online com-

panion to the (paper) journalArtificial Life, published by the Santa
Fe Institute (http://www.santafe.edu/).

System dynamics

STELLA

http://www.iseesystems.com/

This is the site for the Stella simulation package, one of the best-known
packages for scientists, and forithink, a version aimed at business use.

DESERT ISLAND DYNAMICS : AN ANNOTATED SURVEY OF THE ESSEN-
TIAL SYSTEM DYNAMICS L ITERATURE

http://web.mit.edu/jsterman/www/DID.html

This 1992 survey of the English-language system dynamics literature by M.
Anjali Sastry and John D. Sterman identifies and summarizes some of the
papers, books, games and software programs that have most influenced the
development of the field.

THE SYSTEM DYNAMICS SOCIETY

http://www.albany.edu/cpr/sds/ or http://www.systemdynamics.
org

The System Dynamics Society is an international, non-profit organization
devoted to encouraging the development and use of system dynamics around

Microsimulation 261

the world.

GENE BELLINGER’ S SYSTEMS PAGE

http://systems-thinking.org

This site has information on a variety of systems-based topics.

POWERSIM

http://www.powersim.com/

This is the home of the Powersim package; it has an example of system
dynamics applied to the UK Newbury Bypass traffic scheme.

INSTITUTE OFROBOTICS AND SYSTEM DYNAMICS

http://www.op.dlr.de/FF-DR/ff_dr_homepage_engl.html

The Institute of Robotics and System Dynamics is part of the German
Aerospace Research Establishment.

LONDON BUSINESSSCHOOL SYSTEM DYNAMICS GROUP

http://www.lbs.ac.uk/sysdyn/

This group works on topics involving system dynamics, systems thinking
and strategic modelling.

‘V IOLATING AN OCCUPATIONAL SEX-STEREOTYPE: ISRAELI WOMEN

EARNING ENGINEERING DEGREES’

http://www.socresonline.org.uk/socresonline/1/4/3.html

This is a paper inSociological Research Onlineby Chanoch Jacobsen and
Tamar Vanki on applying system dynamics to a sociological issue.

Microsimulation

CAMBRIDGE M ICROSIMULATION UNIT

http://www.econ.cam.ac.uk/dae/mu/microsim.htm

The Cambridge Microsimulation Unit is part of the Department of Applied
Economics at the University of Cambridge and carries out a range of social
and economic policy work using microsimulation.

CORNELL M ICROSIMULATION

http://www.strategicforecasting.com/corsim/

262 Web sites

This is the home of CORSIM, a dynamic microsimulation model based at
Cornell University.

THE NATIONAL CENTRE FOR SOCIAL AND ECONOMIC MODELLING,
CANBERRA, AUSTRALIA

http://www.natsem.canberra.edu.au/index.html

NATSEM maintains an extensive microsimulation site.

EUROMOD

http://www.econ.cam.ac.uk/dae/mu/emod.htm

EUROMOD is a 15-country Europe-wide benefit-tax model. It involves a
team of researchers from all of the 15 states that formed the European Union
until May 2004.

EUROMOD provides estimates of the distributional impact of changes to
personal tax and transfer policy, with (a) the specification of policy changes,
(b) the application of revenue constraints and (c) the evaluation of results
each taking place at either the national or the European level. Thus EURO-
MOD is of value both in assessing the consequences of consolidated social
policies and in understanding how different policies in different countries
may contribute to common objectives.

M ICROSIMULATION AND ECONOMETRICS AT THEINSTITUTE OFFISCAL

STUDIES

http://www.ifs.org.uk/

The Institute of Fiscal Studies in London uses microsimulation for some of
its policy research.

STATISTICS CANADA M ICROSIMULATION MODELS

http://www.statcan.ca/english/spsd/

For over a decade Canada’s national statistical agency has developed static
models (SPSD/M), dynamic models (LifePaths) and a general simulation
language (ModGen) for social policy, tax policy and other applications.

DYNAMIC M ICROSIMULATION OF ELDERS’ H EALTH AND WELL-BEING

http://www-cpr.maxwell.syr.edu/microsim/microlst.htm

From the Center for Demography and Economics of Aging at Syracuse
University.

Queuing models 263

ASPEN: MP MICROSIMULATION MODEL OF THE UNITED STATES

ECONOMY

http://www.cs.sandia.gov/tech_reports/rjpryor/Aspen.html

ASPEN was a project to develop an agent-based microsimulation model of
the United States economy on the massively parallel Intel Paragon computer.

TRANSIMS

http://transims.tsasa.lanl.gov/home.html

This page is about the US TRansportation ANalysis SIMulation System.

PROGRAM FORIMPROVED VEHICLE DEMAND FORECASTINGMODELS

http://128.200.36.2/its/research/fuel.html

The aim of this project is to develop a microsimulation model system for
traffic loads.

Queuing models

Details of a number of discrete event simulation modelling packages are
available on the Web. In some cases, the Web sites also offer demonstrations
and tutorials about the packages.

STELLA

http://www.iseesystems.com/

This is the site for the Stella simulation package, one of the best-known
packages for scientists, and forithink, a version aimed at business use.

SIM SCRIPT

http://www.caciasl.com/

A description of the SimScript II simulation programming language and
development environment can be found here. This site also describes Sim-
process, which is a related simulation tool with a graphical user interface.

SIMPLEX 3

http://www.or.uni-passau.de/english/3/simplex.php3

This is the home page for Simplex3, an object-oriented modelling tool for
discrete event simulation. Simplex3 is available free from this site.

264 Web sites

EMPLANT

http://www.emPlant.de/simulation.html

emPlant, successor to SIMPLE++, is designed for the planning of manufac-
turing plants and production processes by means of simulation. It includes a
scalable factory model and features for the construction of a graphical user
interface.

EXTEND

http://www.imaginethatinc.com/

This is an extensible simulator with a sophisticated user interface.

Cellular automata

OPEN DIRECTORY

http://search.dmoz.org/cgi-bin/search?search=cellular+

automata

A good starting place for further information on cellular automata is the
Open Directory, a voluntary effort to create a directory of the Web.

MODERN CELLULAR AUTOMATA

http://www.collidoscope.com/modernca/welcome.html

This page has many examples of CAs and offers a Java applet that can be
embedded in a Web page to produce many more variations.

DDLAB

http://www.ddlab.com/

DDLab is an interactive graphics program for researching discrete dynam-
ical networks, relevant to the study of complexity, emergent phenomena,
neural networks, and aspects of theoretical biology such as gene regulatory
networks. A network can be set up with any architecture from cellular au-
tamata (CA) to ‘random Boolean networks’ (RBN, networks with arbitrary
connections and heterogeneous rules). Network dimensions may be 1d, 2d
or 3d. The network may also have heterogeneous neighbourhood sizes.

STEPHEN WOLFRAM’ S COLLECTED PAPERS ON CELLULAR AUTOMATA

AND COMPLEXITY

http://www.stephenwolfram.com/publications/

Multi-agent systems 265

Wolfram has provided an extensive set of pages on cellular automata and
their uses.

Multi-agent systems

AGENT-BASED COMPUTATIONAL ECONOMICS: GROWING ECONOMIES

FROM THE BOTTOM UP

http://www.econ.iastate.edu/tesfatsi/ace.htm

This site has a comprehensive bibliography and links to everything to do
with computational economics and social simulation, and is especially good
on links to multi-agent simulations. It also includes a tutorial on agent-based
computational economics.

INTELLIGENT SOFTWARE AGENTS

http://www.sics.se/isl/abc/survey.html

Sverker Janson has a page on the Swedish Institute of Computer Science site
with a huge number of agent-based links.

MULTI -AGENT SYSTEMS

fhttp://www.multiagent.com/

This site contains pointers to information about multi-agent systems, includ-
ing both research and industrial references.

Neural networks

NEURAL NETWORKSWAREHOUSE

http://neuralnetworks.ai-depot.com/

A comprehensive site with links to books, tutorials, software and descrip-
tions of applications.

ARTIFICIAL NEURAL NETWORKS TUTORIAL

http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.

html

A tutorial with a short bibliography.

266 Web sites

NEURAL JAVA

http://diwww.epfl.ch/mantra/tutorial/english/

Neural Java is a series of exercises and demonstrations. Each exercise con-
sists of a short introduction, a small demonstration program written in Java
as an Applet, and a series of questions which are intended as an invitation to
play with the programs and explore the possibilities of different algorithms.

Evolutionary computation

EVOWEB

http://evonet.lri.fr

The website of EvoNet, the European Network of Excellence in Evolution-
ary Computing. It includes many tutorial resources.

THE GENETIC ALGORITHMS ARCHIVE

http://www.aic.nrl.navy.mil/galist/

This site provides a good set of genetic algorithm resources, including
archives of the GA discussion list and source code.

GENETIC PROGRAMMING

http://www.geneticprogramming.org/

This is a guide to genetic algorithms and genetic programming, with many
links.

INTRODUCTION TOGENETIC ALGORITHMS

http://cs.felk.cvut.cz/∼xobitko/ga/
These pages introduce some of the fundamentals of genetics algorithms.
Several interactive Java applets have been included to demonstrate basic
concepts of genetic algorithms.

EMAIL LISTS

There are several mailing lists for news about conferences, books and events
related to evolutionary computing. Sign up at:
http://ec-digest.research.ucf.edu

http://www.jiscmail.ac.uk/lists/evolutionary-computing.

html

http://www.genetic-programming.org/gpmailinglist.html

Appendix B

Linear stability analysis of the
dove–hawk–law-abider model

For the purpose of linear stability analysis, we approximate a system of
nonlinear differential equations with its first-order Taylor expansion. In the
case of the dove–hawk–law-abider model this means approximating

ṗ =

(
ṗD

ṗH

)
= f(p) (B.1)

ṗD = −p2
DpH

2
(2cD + cH) +

pDpH

4
(2cD + 2cH − u) +

+
p2

D

4
(2cD + u)− pD

4
(2cD + u)

ṗH = −pDp2
H

2
(2cD + cH) +

p2
H

4
(cH − u) +

+
pDpH

4
(4cD + cH + u)− pH

4
(cH − u)

with the linear system

f ∗(p) = f(p0) + J(p0)(p− p0) (B.2)

whereJ(p0) is the Jacobian matrix of the system at the stationary statep0,
that is, the matrix (∂fD

∂pD
(p0)

∂fD

∂pH
(p0)

∂fH

∂pD
(p0)

∂fH

∂pH
(p0)

)
(B.3)

268 Linear stability analysis of the dove–hawk–law-abider model

where ∂fi

∂pj
(p0) is the partial derivative offi with respect topj at p0. The

partial derivatives evaluate as

∂fD

∂pD

= −pDpH(2cD + cH) +
pH

4
(2cD + 2cH − u) +

+
pD

2
(2cD + u)− 2cD + u

4
(B.4)

∂fD

∂pH

= −p2
D

2
(2cD + cH) +

pD

4
(2cD + 2cH − u) (B.5)

∂fH

∂pD

=
pH

4
(4cD + cH + u)− p2

H

2
(2cD + cH) (B.6)

∂fH

∂pH

= −pDpH(2cD + cH) +
pH

2
(cH − u) +

+
pD

4
(4cD + cH + u)− cH − u

4
(B.7)

A comparison of∂fD

∂pH
and ∂fH

∂pD
shows that a global stability analysis will

be most cumbersome. Their inequality makes clear thatfD andfH are not
derivatives of a so-called potential functionV with respect topD andpH ,
respectively. If there existed such a potential function, then we could plot it;
its graph would look like a mountain range. The deepest points in valleys
would then correspond to stable stationary states (which in this context are
also called sinks), summits would correspond to stationary states unstable
in all directions (sources), and saddles (ridges, cols) would correspond to
stationary states that are unstable only with respect to certain directions.
Trajectories – the paths the model describes in its state space – would
correspond to rivers and creeks. This type of global stability analysis can
yield quite perspicuous results, but it is restricted to cases where a potential
function (or, alternatively, a so-called Lyapunov function, which is usually
hard to find) exists.

The functionf ∗ is a close approximation to the functionf – but only in
an infinitesimal neighbourhood of the stationary statep0. It can be converted
into a linear combination of two exponential functions whose exponents are
λit, with λi the eigenvalues of the Jacobian matrix:

f ∗(p) = f(p0) + v1 exp(λ1t) + v2 exp(λ2t)

in which vi are the eigenvectors of the Jacobian. This is why we need only
these eigenvalues: positive eigenvalues lead to an ever increasing value of
f ∗, which means that over time the system leaves the neighbourhood of
the stationary state. If all eigenvalues of a Jacobian in a stationary state

Linear stability analysis of the dove–hawk–law-abider model 269

are negative, the linearized system approaches the stationary state, since for
t→∞ the exponential functions vanish.

Here we return to triplets:(1, 0, 0) means: all doves, no hawks, no law-
abiders. For the four stationary states (1, 0, 0), (0, 1, 0), (0, 0, 1), and (cH−u

2cD+cH
,

2cD+u
2cD+cH

, 0) the Jacobian evaluates to

(1, 0, 0) :

(
2cD+u

4
−2cD+u

4

0 2cD+u
2

)

(0, 1, 0) :

(
cH−u

2
0

− cH−u
4

cH−u
4

)

(0, 0, 1) :

(
−2cD+u

4
0

0 − cH−u
4

)

(cH−u
2cD+cH

, 2cD+u
2cD+cH

, 0) :

 − (cH−u)(2cD+u)
4(2cD+cH)

(cH−u)(2cD+u)
4(2cD+cH)

(cH−u)(2cD+u)
4(2cD+cH)

− (cH−u)(2cD+u)
4(2cD+cH)

The eigenvalues of the Jacobian are the following

(1, 0, 0) (0, 1, 0) (0, 0, 1) (cH−u
2cD+cH

, 2cD+u
2cD+cH

, 0)

λ1 = 2cD+u
2

λ1 = cH−u
4

λ1 = − cH−u
4

λ1 = − (cH−u)(u+2cD)
4(2cD+cH)

λ2 = 2cD+u
2

λ2 = cH−u
2

λ2 = −2cD+u
4

λ2 = 0

(note thatcD < u < cH , and that all expressions in parentheses, denomina-
tors and numerators are written so that they are positive).

There is one stationary state with only negative eigenvalues, namely the
third, which is when only the law-abiders survive. This is the only stable
state the system can assume – the system behaves like a ball that always
returns to the deepest point in a basin. The other stationary states are not
attractors and so the system will escape their neighbourhood. States 1 and
2 are so-called sources,1 in which the system is unstable with respect to all
directions and behaves like a ball at the summit of a hill: the least fluctuation
will drive it away in some direction. State 4 is a so-called saddle point, which
means that there is one direction in which the system approaches this point
(the direction from the summit to a saddle), while in all other directions
the system is removed from the neighbourhood of the saddle (note that at
a saddle we normally have some negative and some positive eigenvalues,
while here we have one negative and one vanishing eigenvalue, but as we
saw, it is in fact a saddle).

1Note that in linear stability analysis ‘source’ has a different meaning than in system
dynamics.

270 Linear stability analysis of the dove–hawk–law-abider model

Although statements about the stability of the system hold only for an
infinitesimal neighbourhood when they are derived from a linear stability
analysis, in this case they are sufficient to describe the behaviour of our
model. Since the stationary states lie at the corners and on one edge of the
region of interest (allpi positive and summing to 1), the overall behaviour
of the system is clear. From every point in the phase space, the system will
end up with only law-abiders, perhaps after it has more-or-less approached
the saddle point (without law-abiders) first.

A global stability analysis – which is not detailed here – reveals the same,
and a graph derived from the results of this global analysis shows at the same
time why the most interesting state of this model (this system of differential
equations) is called a saddle. Global stability analysis tries to find a scalar
function of the variables of the system (called the potential function) whose
derivatives with respect to these variables are exactly the right-hand sides
of the original system of differential equations. Such a function does not
exist for our system, but a close relative, the so-called Lyapunov function
(named after its inventor, the Russian mathematician Aleksandr Lyapunov)
VL exists. Its shape is shown in Figure B.1.

0

0.2

0.4

0.6

0.8

1

Doves

0

0.2

0.4

0.6

0.8

1

Hawks

0

0.2

0.4

0.6

VL

0.2

0.4

0.6

0.8

1

Dove

0

2

collLyapunov.nb 1

Figure B.1: Lyapunov function of the dove–hawk–law-abider model

The representative point of our system would always move downhill
on the landscape drawn in Figure B.1 (although, in the case of Lyapunov

Linear stability analysis of the dove–hawk–law-abider model 271

functions the representative point will not take the steepest descent, as it does
in the case of ordinary potentials). If the representative point of the system
is started somewhere on the ridge of the landscape, it will stop at the saddle
point, viz. the deepest point of the ridge, and only if it starts slightly beside
the ridge will it approach the deepest point of the ridge, and shortly before it
arrives there, it will turn down to the deepest point of the basin (representing
the system state without any hawks and doves).

Appendix C

Random number generators

Random events are usually modelled and simulated using pseudo-random
number generators. If an event has to occur with probabilityp, then a
continuous random variable which is uniformly distributed between 0 and
1 is sampled and if its realization is less thanp the event occurs, other-
wise the event does not occur. So the problem reduces to the problem of
realizing uniformly distributed random numbers. Another related problem
is the production of random variables with other distributions, such as an
exponentially distributed arrival time. A continuous random variableX is
exponentially distributed with parameterλ (mean1

λ
) if its probability density

function is

fX(x) =

{
λe−λx for x ≥ 0

0 for x < 0
(C.1)

Its distribution functionFX(x) (which yields the probability thatX ≤ x) is

FX(x) =

{
1− e−λx for x ≥ 0

0 for x < 0
(C.2)

This function (which is strictly increasing) has an inverse function (which is
also strictly increasing):

y = FX(x) if and only if x = F−1
X (y) (C.3)

A random quantityX with the distribution functionFX(x) can now be
computed by setting

X = F−1
X (U) (C.4)

Random number generators 273

which in the case of the exponential distribution is

X = − ln(1− U)

λ
(C.5)

whereln is the natural logarithm andU is a uniformly distributed random
variable between 0 and 1. This is because the probability thatX ≤ x is
the probability thatF−1

X (U) ≤ x, and this is in turn the probability that
U ≤ FX(x), and this probability isFX(x) (because the distribution function
FU(x) of a uniform random variable between 0 and 1 isFU(x) = x; note that
for the generation of exponentially distributed random numbers, the formula
X = − ln(U)/λ can also be used, because ifU is uniformly distributed
between 0 and 1, the same holds for1 − U). So, this problem, too, reduces
to the problem of generating uniform random numbers between 0 and 1.
The same applies to a number of other distributions whose distribution
functions have inverse functions that can easily be calculated. Normally
distributed random variables cannot be generated by this method; there are
other methods to sample normal random numbers, the most important ones
deriving from the so-called polar method (see, for example, Knuth 1981:
117–118; Ahrens and Dieter 1988).

Thus, the main problem in modelling and simulating stochastic processes
in a digital computer is calculating a stream of pseudo-random, uniformly
distributed numbers.1 The most popular random number generators used
today (and integrated into most programming libraries) are linear congru-
ential generators. A sequence of pseudo-random numbers is generated by
the formula (Knuth 1981: 9)

Xn+1 = (aXn + c) modm (C.6)

where mod is the modulo operation, which yields the remainder after divi-
sion bym, the modulus. The numbersa andc, 0 ≤ a, c < m, are called
the multiplier and theincrement, X0 is called the starting value orseed
(which a user should be able to select so that a particular simulation run can
be replicated). Pseudo-random numbers generated this way always come in
cycles. The longest possible cycle has lengthm. After this all possible values
of Xn must have occurred, and a new cycle starts. The period can be shorter,
depending on the values ofm, a and c. A recommended combination of
values is

m = 231 − 1 a = 75 c = 0 (C.7)

1An alternative to this calculation would be a radioactive source whose fissions would
be counted. The time between two fission events is exponentially distributed, so uniform
random numbers could be generated using the inverse of the operation described above.

274 Random number generators

Here, the modulus is prime (and quite convenient, considering that on most
machines the word length is 32), the generator has the full period, that is,
all 2,147,483,647 different numbers occur, and the algorithm can be imple-
mented in any high-level programming language (Park and Miller 1988).

A new generation of pseudo-random number generators was invented
by Matsumoto and Nishimura (1998). TheirMersenne Twister, which is also
used by NetLogo, has a period of219937−1 (as compared to the period length
of 232 − 1 in the classical, linear congruential pseudo-random number gen-
erators) and was shown to produce uniformly distributed random numbers
in 623 dimensions (as compared to five dimensions for linear congruential
generators), thus the danger of serial correlation between successive random
numbers is drastically reduced.

So far we have generated only integer numbers; their conversion into real
numbers in the interval between 0 and 1 is straightforward: the value returned
by the algorithm is divided bym. In many simulation systems, more than one
stream of random numbers can be generated (as for instance in SimScript,
in which the last argument of all random functions indicates the number of
such a stream). All streams are normally produced by the same generator,
each stream starting at a different place in the period. It still seems to be an
open question whether this is a real advantage (cf. Bratleyet al.1987: 226).

References

Abelson, R. P. and Bernstein, A. (1963) A computer simulation of community referendum
controversies.Public Opinion Quarterly, 27: 93–122.

Agre, P. E. and Chapman, D. (1987) Pengi: an implementation of a theory of activity. In
Proceedings of AAAI-87, pp. 268–272. Morgan Kaufmann, Los Angeles, CA.

Ahrens, J. H. and Dieter, U. (1988) Efficient table-free sampling methods for the exponen-
tial, Cauchy, and normal distributions.Communications of the ACM, 31: 1330–1337.

Alvin, P. and Foley, D. (1992) Decentralized, dispersed exchange without an auctioneer.
Journal of Economic Behaviour and Organization, 18: 27–51.

an der Heiden, U. (1992) Chaos in health and disease. In W. Tschacher, G. Schiepek
and J. Brunner (eds),Self-Organization and Clinical Psychology, Springer Series in
Synergetics, Vol. 58, pp. 55–87. Springer-Verlag, Berlin.

Anderson, J. R. and Lebiere, C. (1998)The Atomic Components of Thought. Erlbaum,
Mahwah, NJ.

Antcliff, S. (1993) An introduction to DYNAMOD: A dynamic microsimulation model.
Technical Report 1, National Centre for Social and Economic Modelling (NATSEM),
University of Canberra, Canberra.

Archer, M. (1995)Realist Social Theory: The Morphogenetic Approach. Cambridge Uni-
versity Press, Cambridge.

Arnold, K. and Gosling, J. (1998)The Java Programming Language. 2nd edn. Addison-
Wesley, Reading, MA.

Axelrod, R. (1987) The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis
(ed.),Genetic Algorithms and Simulated Annealing. Pitman, London.

Axelrod, R. (1995) A model of the emergence of new political actors. In N. Gilbert and
R. Conte (eds),Artificial Societies: The Computer Simulation of Social Life. UCL Press,
London.

Axelrod, R. (1997a) Advancing the art of simulation in the social sciences. In R. Conte,
R. Hegselmann and P. Terna (eds),Simulating Social Phenomena, pp. 21–40. Springer-
Verlag, Berlin.

Axelrod, R. (1997b) Advancing the art of simulation in the social sciences.Complexity, 3:
16–22.

Babloyantz, A. (1980) Self-organization phenomena in multiple unit systems. In H. Haken

276 References

(ed.),Dynamics of Synergetic Systems, Springer Series in Synergetics, Vol. 6, pp. 180–
190. Springer-Verlag, Berlin.

Bak, P. (1996)How Nature Works: The Science of Self-Organized Criticality. Springer-
Verlag, New York, NY.

Balci, O. (1994) Validation, verification, and testing techniques throughout the life cycle of
a simulation study.Annals of Operations Research, 53: 121–173.

Banks, J. (ed.) (1998)Handbook of Simulation: Principles, Methodology, Advances, Appli-
cations, and Practice. Wiley, New York, NY.

Banzhaf, W., Nordin, P., Keller, R. E. and Francone, F. D. (1998)Genetic Programming: an
Introduction. Morgan Kaufmann, San Francisco, CA.

Beck, K. (1999)Extreme Programming Explained. Addison-Wesley, Boston, MA.
Beltratti, A., Margarita, S. and Terna, P. (1996)Neural Networks for Economic and Finan-

cial Modelling. International Thomson Computer Press, London.
Berlekamp, E., Conway, J. and Guy, R. (1982)Winning Ways for Your Mathematical Plays,

Vol. 2: Games in Particular. Academic Press, London.
Bond, A. H. and Gasser, L. (1988)Readings in Distributed Artificial Intelligence. Morgan

Kaufmann, Los Altos, CA.
Booch, G., Rumbaugh, J. and Jacobson, I. (2000)The Unified Modeling Language User

Guide. 6th print edn. Addison-Wesley, Reading, MA.
Box, G., Hunter, W. and Hunter, J. (1978)Statistics for Experimenters. Wiley, New York,

NY.
Brajnik, G. and Lines, M. (1998) Qualitative modeling and simulation of socio-economic

phenomena.Journal of Artificial Societies and Social Simulation, 1.http://www.soc.
surrey.ac.uk/JASSS/1/1/2.html.

Bratley, P., Fox, B. L. and Schrage, L. E. (1987)A Guide to Simulation. 2nd edn. Springer-
Verlag, New York, NY.

Bremer, S. A. (ed.) (1987)The GLOBUS Model. Computer Simulation of Worldwide Politi-
cal and Economic Development. Campus/Westview, Frankfurt.

Brooks, R. (1990) Elephants don’t play chess.Robotics and Autonomous Systems, 6: 3–15.
Brown, L. and Harding, A. (2002) Social modelling and public policy: Application of

microsimulation modelling in Australia.Journal of Artificial Societies and Social Sim-
ulation, 5/4/6.http://jasss.soc.surrey.ac.uk/5/4/6.html.

Bunge, M. (1977)Ontology I: The Furniture of the World. Treatise on Basic Philosophy,
Vol. 3. Reidel, Dordrecht.

Bunge, M. (1979)Ontology II: A World of Systems. Treatise on Basic Philosophy, Vol. 4.
Reidel, Dordrecht.

CACI Products Company (2003)SIMPROCESS Release 4 User’s Manual. CACI, Arling-
ton, VA.

Caldwell, S. B. (1993) CORSIM 2.0: A dynamic microanalytic model of persons and fami-
lies in the United States.Forefronts, 8.http://www.tc.cornell.edu/Forefronts/
forefronts.html.

Cangelosi, A. and Parisi, D. (eds) (2001)Simulating the Evolution of Language. Springer
Verlag, London.

Chaib-draa, B., Moulin, B., Mandiau, R. and Millot, P. (1992) Trends in distributed artificial
intelligence.Artificial Intelligence Review, 6: 35–66.

Chattoe, E. (1998) Just how (un)realistic are evolutionary algorithms as representations of
social processes?Journal of Artificial Societies and Social Simulation. http://www.
soc.surrey.ac.uk/JASSS/1/3/2.html.

References 277

Chattoe, E. and Gilbert, N. (1996) The simulation of budgetary decision-making and mech-
anisms of social evolution. Technical report, University of Surrey.

Chattoe, E. and Gilbert, N. (1997) A simulation of adaptation mechanisms in budgetary
decision making. In R. Conte, R. Hegselmann and P. Terna (eds),Simulating Social
Phenomena, pp. 401–418. Springer-Verlag, Berlin.

Chen, P. P. (1976) The entity-relationship model – toward a unified view of data.ACM
Transactions on Database Systems, 1: 9–36.

Christiansen, M. and Kirby, S. (eds) (2003)Language Evolution: The States of the Art.
Oxford University Press, Oxford.

Chung, C. A. (2003)Simulation Modeling Handbook: A Practical Approach. CRC Press,
Boca Raton. FL.

Citro, C. F. and Hanushek, E. A. (eds) (1991)The Uses of Microsimulation Modelling. Vol.
1: Review and Recommendations. National Academy Press, Washington, DC.

Conte, R. and Castelfranchi, C. (1995) Understanding the functions of norms in social
groups. In N. Gilbert and R. Conte (eds),Artificial Societies: The Computer Simulation
of Social Life, pp. 252–267. UCL Press, London.

Conte, R. and Gilbert, N. (1995) Introduction. In N. Gilbert and R. Conte (eds),Artificial
Societies: The Computer Simulation of Social Life, pp. 1–15. UCL Press, London.

Conte, R., Hegselmann, R. and Terna, P. (1997)Simulating Social Phenomena. Springer-
Verlag, Berlin.

Creedy, J. and Duncan, A. S. (2002)Microsimulation Modelling of Taxation and the
Labour Market: The Melbourne Institute Tax and Transfer Simulation. Edward Elgar,
Cheltenham.

Deffuant, G., Amblard, F., Weisbuch, G. and Faure, T. (2002) How can extremism prevail? a
study based on the relative agreement interaction model.Journal of Artificial Societies
and Social Simulation. http://www.soc.surrey.ac.uk/JASSS/5/4/1.html.

Deffuant, G., Amblard, F., Weisbuch, G. and Faure, T. (2003) Simple is beautiful and
necessary.Journal of Artificial Societies and Social Simulation. http://www.soc.
surrey.ac.uk/JASSS/6/1/6.html.

Deutsch, K. W. (1987) GLOBUS – the rise of a new field of political science. In S. A.
Bremer (ed.),The GLOBUS Model. Computer Simulation of Worldwide Political and
Economic Development, pp. vii–xxiii. Campus, Frankfurt.

Doran, J. E. (1997a) Foreknowledge in artificial societies. In R. Conte, R. Hegselmann and
P. Terna (eds),Simulating Social Phenomena, pp. 457–470. Springer-Verlag, Berlin.

Doran, J. E. (1997b) From computer simulation to artificial societies.Transactions of the
Society for Computer Simulation International, 14: 69–78.

Doran, J. E. (1998) Simulating collective misbelief.Journal of Artificial Societies and Social
Simulation, 1.http://www.soc.surrey.ac.uk/JASSS/1/1/3.html.

Doran, J. E. and Gilbert, N. (1994) Simulating societies: an introduction. In N. Gilbert and
J. E. Doran (eds),Simulating Societies: The Computer Simulation of Social Phenomena,
pp. 1–18. UCL Press, London.

Doran, J. E. and Palmer, M. (1995) The EOS project: integrating two models of Palaeolithic
social change. In N. Gilbert and R. Conte (eds),Artificial Societies: The Computer
Simulation of Social Life, pp. 103–125. UCL Press, London.

Doran, J. E., Palmer, M., Gilbert, N. and Mellars, P. (1994) The EOS project: modelling Up-
per Paleolithic social change. In N. Gilbert and J. E. Doran (eds),Simulating Societies:
The Computer Simulation of Social Phenomena, pp. 195–222. UCL Press, London.

Drogoul, A., Corbara, B. and Lalande, S. (1995) Manta: new experimental results on the

278 References

emergence of (artificial) ant societies. In N. Gilbert and R. Conte (eds),Artificial
Societies: The Computer Simulation of Social Life. UCL Press, London.

Drogoul, A. and Ferber, J. (1994) Multi-agent simulation as a tool for studying emergent
processes in societies. In J. E. Doran and N. Gilbert (eds),Simulating Societies: The
Computer Simulation of Social Phenomena, pp. 127–142. UCL Press, London.

Durkheim, E. (1895)The Rules of Sociological Method. Readings from Emile Durkheim,
edited by Kenneth Thompson. Ellis Horwood, Chichester.

Eason, R. J. (1996) Microsimulation of direct taxes and fiscal policy in the United Kingdom.
In A. Harding (ed.),Microsimulation and Public Policy, Contributions to Economic
Analysis, Vol. 3, pp. 23–45. North-Holland, Amsterdam.

Eiben, A. E. and Smith, J. E. (2003)Introduction to Evolutionary Computing. Springer-
Verlag, Berlin.

Eigen, M. and Schuster, P. (1979)The Hypercycle. A Principle of Natural Self-Organization.
Springer-Verlag, Berlin.

Elster, J. (1986)Rational Choice. Basil Blackwell, Oxford.
Elster, J. (1989)Nuts and Bolts for the Social Sciences. Cambridge University Press,

Cambridge.
Epstein, J. M. and Axtell, R. (1996)Growing Artificial Societies – Social Science from the

Bottom Up. MIT Press, Cambridge, MA.
Etienne, M., Page, C. L. and Cohen, M. (2003) A step-by-step approach to building land

management scenarios based on multiple viewpoints on multi-agent system simulations.
Journal of Artificial Societies and Social Simulation, 6. http://www.soc.surrey.
ac.uk/JASSS/6/2/2.html.

Ferber, J. (1998)Multi-agent systems. Addison-Wesley, Reading, MA.
Fisher, M. and Wooldridge, M. (1995) A logical approach to simulating societies. In

N. Gilbert and R. Conte (eds),Artificial Societies: The Computer Simulation of Social
Life. UCL Press, London.

Fogel, D. (1995)Evolutionary Computation: Towards a New Philosophy of Machine Intel-
ligence. IEEE Press, Piscataway, NJ.

Fogel, L., Owens, A. and Walsh, M. (1966)Artificial Intelligence through Simulated Evolu-
tion. Wiley, Chichester.

Forrester, J. W. (1971)World Dynamics. MIT Press, Cambridge, MA.
Forrester, J. W. (1980)Principles of Systems. 2nd preliminary edn. MIT Press, Cambridge,

MA. First published in 1968.
Fowler, M. and Scott, K. (1999)UML Distilled. 2nd edn. Addison Wesley, Reading, MA.
Frey, B. S. and Eichenberger, R. (1996) Marriage paradoxes.Rationality and Society, 8:

187–206.
Galler, H. P. (1990) Verwandtschaftsnetzwerke im demographischen Modell – Ergebnisse

einer Modellrechnung.Acta Demographica, 1: 63–84.
Galler, H. P. (1997) Discrete-time and continuous-time approaches to dynamic microsim-

ulation reconsidered. Technical Report 13, National Centre for Social and Economic
Modelling (NATSEM), University of Canberra, Canberra.

Gamble, C. (1991) The social context for European Palaeolithic art.Proceedings of the
Prehistoric Society, 57: 3–15.

Garson, G. D. (1998)Neural Networks: An Introductory Guide for Social Scientists. Sage
Publications, London.

Gazdar, G. and Mellish, C. (1989)Natural Language Processing in Prolog. Addison-
Wesley, London.

References 279

Gilbert, N. (1993)Analyzing Tabular Data: Loglinear and Logistic Models for Social
Researchers. UCL Press, London.

Gilbert, N. (1995) Emergence in social simulation. In N. Gilbert and R. Conte (eds),
Artificial Societies: The Computer Simulation of Social Life, pp. 144–156. UCL Press,
London.

Gilbert, N. (1996) Simulation as a research strategy. In K. G. Troitzsch, U. Mueller,
N. Gilbert and J. E. Doran (eds),Social Science Microsimulation, pp. 448–454.
Springer-Verlag, Berlin.

Gilbert, N. and Conte, R. (1995)Artificial Societies: The Computer Simulation of Social
Life. UCL Press, London.

Gilbert, N. and Doran, J. E. (1994)Simulating Societies: The Computer Simulation of Social
Phenomena. UCL Press, London.

Gilbert, N., Maltby, S. and Asakawa, T. (2002) Participatory simulations for developing
scenarios in environmental resource management. In C. Urban (ed.),Third Workshop
on Agent-Based Simulation, pp. 67–72. SCS-Europe, Passau, Germany.

Gilbert, N. and Terna, P. (2000) How to build and use agent-based models in social science.
Mind and Society, 1: 57–72.

Goldberg, A. (1989)Smalltalk-80: The Language. Addison-Wesley, London.
Goldberg, D. and Deb, K. (1991) A comparative analysis of selection schemes used in

genetic algorithms. In G. J. E. Rawlins (ed.),Foundations of Genetic Algorithms, pp.
69–93. Morgan Kaufmann, San Mateo, CA.

Goldspink, C. (2002) Methodological implications of complex systems approaches to so-
ciality: Simulation as a foundation for knowledge.Journal of Artificial Societies and
Social Simulation, 5.http://www.soc.surrey.ac.uk/JASSS/5/1/3.html.

Graham, P. (1996)ANSI Common Lisp. Prentice Hall, Englewood Cliffs, NJ.
Grünbaum, A. (1962) Temporally-asymmetric principles, parity between explanation and

prediction, and mechanism and teleology.Philosophy of Science, 29: 162–170.
Gurney, K. (1997)Introduction to Neural Networks. Routledge, London.
Haken, H. (1978)Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-

Organization in Physics, Chemistry and Biology. Springer Series in Synergetics, Vol. 1.
2nd enlarged edn. Springer-Verlag, Berlin.

Haken, H. (1996) Synergetik und Sozialwissenschaften.Ethik und Sozialwissenschaften.
Streitforum f̈ur Erwägungskultur, 7: 587–594.

Hales, D., Rouchier, J. and Edmonds, B. (2003) Model-to-model analysis.Journal of Artifi-
cial Societies and Social Simulation, 6.http://www.soc.surrey.ac.uk/JASSS/6/
4/5.html.

Hamilton, W. (1964) The evolution of social behavior.Journal of Theoretical Biology, 7:
1–52.

Hanneman, R. A. (1988)Computer-Assisted Theory Building. Modeling Dynamic Social
Systems. Sage, Newbury Park, CA.

Harding, A. (1990) Dynamic microsimulation models: problems and prospects. Discussion
Paper 48, Welfare State Programme, London School of Economics.

Harding, A. (ed.) (1996)Microsimulation and Public Policy, Contributions to Economic
Analysis, Vol. 232. Elsevier North Holland, Amsterdam.

Hare, M., Gilbert, N., Maltby, S. and Pahl-Wostl, C. (2002) An Internet-based role playing
game for developing stakeholders’ strategies for sustainable water management: expe-
riences and comparisons with face-to-face gaming. InISEE 2002. Sousee, Tunisia.

Hare, M., Letcher, R. and Jakeman, A. (2003) Participatory modelling in natural resource

280 References

management: A comparison of four case studies.Integrated Assessment, 4: 62–72.
Hauser, R., Hochmuth, U. and Schwarze, J. (1994a)Mikroanalytische Grundlagen der

Gesellschaftspolitik. Band 1: Ausgewählte Probleme und L̈osungsans̈atze. Ergebnisse
aus dem gleichnamigen Sonderforschungsbereich an den Universitäten Frankfurt und
Mannheim. Akademie-Verlag, Berlin.

Hauser, R., Ott, N. and Wagner, G. (1994b)Mikroanalytische Grundlagen der Gesellschafts-
politik. Band 2: Erhebungsverfahren, Analysemethoden und Mikrosimulation. Ergeb-
nisse aus dem gleichnamigen Sonderforschungsbereich an den Universitäten Frankfurt
und Mannheim. Akademie-Verlag, Berlin.

Hayes-Roth, F., Waterman, D. and Lenat, D. (1983)Building Expert Systems. Addison-
Wesley, Reading, MA.

Hegselmann, R. (1996) Understanding social dynamics: The cellular automata approach.
In K. G. Troitzsch, U. Mueller, N. Gilbert and J. E. Doran (eds),Social Science
Microsimulation, pp. 282–306. Springer-Verlag, Berlin.

Heike, H.-D., Beckmann, K., Kaufmann, A., Ritz, H. and Sauerbier, T. (1996) A comparison
of a 4GL and an object-oriented approach in micro macro simulation. In K. G. Troitzsch,
U. Mueller, N. Gilbert and J. E. Doran (eds),Social Science Microsimulation, pp. 3–32.
Springer-Verlag, Berlin.

Helbing, D. (1994a) A mathematical model for the behavior of individuals in a social field.
Journal of Mathematical Sociology, 19: 189–219.

Helbing, D. (1994b)Quantitative Sociodynamics. Stochastic Methods and Models of Social
Interaction Processes. Kluwer, Dordrecht.

Henize, J. (1984) Critical issues in evaluating socio-economic models. In T. I. Oren, B. P.
Zeigler and M. S. Elzas (eds),Simulation and Model-Based Methodologies: An Integra-
tive View, NATO Advanced Science Institutes Series, Vol. 10, pp. 557–590. Springer-
Verlag, Berlin.

Hochschild, A. (1983)The Managed Heart: The Commercialisation of Human Feeling.
University of California Press, Berkeley, CA.

Holland, J. H. (1975)Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. and Thagard, P. R. (1986)Induction: Processes
of Inference, Learning, and Discovery. Bradford, Cambridge, MA.

Hughes, B. B. (1999)International Futures: Choices in the Face of Uncertainty. Westview,
Boulder, CO.

Huhns, M. and Singh, M. P. (1998)Readings in Agents. Morgan Kaufmann, San Mateo,
CA.

Hurford, J. R., Studdert-Kennedy, M. and Knight, C. (1998a)Approaches to the Evolution
of Language. Cambridge University Press, Cambridge.

Hurford, J. R., Studdert-Kennedy, M. and Knight, C. (eds) (1998b)Approaches to the
Evolution of Language. Cambridge University Press, Cambridge.

Hutchins, E. and Hazlehurst, B. (1995) How to invent a lexicon: the development of shared
symbols in interaction. In N. Gilbert and R. Conte (eds),Artificial Societies: The
Computer Simulation of Social Life, pp. 157–189. UCL Press, London.

Ilachinski, A. (2001)Cellular Automata. A Discrete Universe. World Scientific, Singapore,
New Jersey, London, Hong Kong.

Jager, W., Popping, R. and Sande, H. v. d. (2001) Clustering and fighting in two-party
crowds: Simulating the approach-avoidance conflict.Journal of Artificial Societies and
Social Simulation, 4.http://www.soc.surrey.ac.uk/JASSS/4/3/7.html.

References 281

Jurafsky, D. and Martin, J. H. (2000)Speech and Language Processing: An Introduction
to Natural Language Processing, Computational Linguistics and Speech Recognition.
Prentice Hall, Englewood Cliffs, NJ.

Karlin, S. and Taylor, H. M. (1975)A First Course in Stochastic Processes. 2nd edn.
Academic Press, Orlando, FL.

Kauffman, S. (1995)At Home in the Universe. Oxford University Press, Oxford.
Kheir, N. A. (1988)Systems Modeling and Computer Simulation, Electrical Engineering

and Electronics, Vol. 1. Marcel Dekker, New York, NY.
Klee, A. and Troitzsch, K. G. (1993) Chaotic behaviour in social systems: Modelling

with GEMM. In K. G. Troitzsch (ed.),Catastrophe, Chaos, and Self-Organization in
Social Systems. Invited Papers of a Seminar Series on Catastrophic Phenomena in
Soviet Society and Self-Organized Behaviour of Social Systems Held at the Institute
of Sociology of the Academy of Sciences of the Ukrainian Republic, Kiev, September 4
to 11, 1992, pp. 81–104. Universität Koblenz–Landau, Koblenz.

Kl ösgen, W. (1986) Software implementation of microanalytic simulation models – state
of the art and outlook. In G. H. Orcutt, J. Merz and H. Quinke (eds),Microanalytic
Simulation Models to Support Social and Financial Policy, Information Research and
Resource Reports, Vol. 7, pp. 475–491. North-Holland, Amsterdam.

Kl üver, J. (1998) The simulation of scientific theories. In P. Ahrweiler and N. Gilbert (eds),
Computer Simulations in Science and Technology Studies. Springer-Verlag, Berlin.

Knuth, D. E. (1981)The Art of Computer Programming. Vol. 2: Seminumerical Algorithms.
2nd edn. Addison-Wesley, Reading, MA.

Kohler, T. A., Van West, C. R., Carr, E. P. and Langton, C. G. (1996) Agent-
based modelling of prehistoric settlement systems in the northern American South-
west. In Third International Conference Integrating GIS and Environmental Mod-
elling. Santa Barbara: National Center for Geographic Information and Analy-
sis, Santa Fe, NM.http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD_ROM/sf_
papers/kohler_tim /kohler.html.

Kolesar, P. and Walker, W. (1975) A simulation model of police patrol operations. Technical
report, Rand Corporation, Santa Monica, CA.

Kontopoulos, K. M. (1993)The Logics of Social Structure. Cambridge University Press,
Cambridge.

Koza, J. (1992)Genetic Programming. MIT Press, Cambridge, MA.
Koza, J. (1994)Genetic Programming 2. MIT Press, Cambridge, MA.
Kraul, M., Troitzsch, K. G. and Wirrer, R. (1995) Lehrerinnen und Lehrer an Gymnasien:

Empirische Ergebnisse aus Rheinland-Pfalz und Resultate einer Simulationsstudie. In
H. Sahner and S. Schwendtner (eds),Kongreß der Deutschen Soziologie Halle an der
Saale 1995. Kongreßband II: Berichte aus den Sektionen und Arbeitsgruppen, pp. 334–
340. Westdeutscher Verlag, Opladen.

Kreutzer, W. (1986)System Simulation. Programming Styles and Languages. Addison-
Wesley, Sydney.

Kuipers, B. (1994)Qualitative Reasoning. Modeling and Simulation with Incomplete
Knowledge. MIT Press, Cambridge, MA.

Laird, J. E., Newell, A. and Rosenbloom, P. S. (1987) Soar: An architecture for general
intelligence.Artificial Intelligence, 33: 1–64.

Lambert, S., Percival, R., Schofield, D. and Paul, S. (1994) An introduction to STINMOD:
A static microsimulation model. Technical Report 1, National Centre for Social and
Economic Modelling (NATSEM), University of Canberra, Canberra.

282 References

Lansing, J. S. (1991)Priests and Programmmers: Technologies of Power in the Engineered
Landscape of Bali. Princeton University Press, Princeton, NJ.

Latańe, B. (1981) The psychology of social impact.American Psychologist, 36: 343–356.
Latańe, B. (1996) Dynamic social impact. Robust predictions from simple theory. In

R. Hegselmann, U. Mueller and K. G. Troitzsch (eds),Modelling and Simulation in
the Social Sciences from a Philosophy of Science Point of View, Theory and Decision
Library, Series A: Philosophy and Methodology of the Social Sciences, pp. 287–310.
Kluwer, Dordrecht.

Lave, C. A. and March, J. G. (1993)An introduction to models in the social sciences.
University Press of America, Lanham, MD, London. Originally published by Harper
& Row, New York 1975.

Lewis, G. H. and Michel, R. C. (eds) (1989)Microsimulation Techniques for Tax and
Transfer Analysis. Urban Institute Press, Washington, DC.

Lomborg, B. (1996) Nucleus and shield: the evolution of social structure in the iterated
prisoner’s dilemma.American Sociological Review, 61: 278–307.

Lumsden, C. J. and Wilson, E. O. (1981)Genes, Mind, and Culture. The Coevolutionary
Process. Harvard University Press, Cambridge, MA.

Maes, P. (1994) Agents that reduce work and information overload.Communications of the
ACM, 37: 31–40.

Malerba, F., Nelson, R., Orsenigo, L. and Winter, S. (1999) History friendly models of
industry evolution: the computer industry.Industrial and Corporate Change, 1: 3–40.

Martinez Coll, J. C. (1986) A bioeconomic model of Hobbes’ ‘state of nature’.Social
Science Information, 25: 493–505.

Matsumoto, M. and Nishimura, T. (1998) Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudorandom number generator.ACM Transactioons on Modeling
and Computer Simulations, 8: 3–30.

Maturana, H. and Varela, F. J. (1992)The Tree of Knowledge: The Biological Roots of
Human Understanding. Revised edn. Shambhala/New Science Press, Boston, MA.

Mayfield, J., Labrou, Y. and Finin, T. (1996) Evaluation of KQML as an agent communica-
tion language. In M. Wooldridge, J. P. M̈uller and M. Tambe (eds),Intelligent Agents II
– Agent Theories, Architectures and Languages, Lecture Notes in Artificial Intelligence.
Springer-Verlag, Berlin.

Maynard Smith, J. (1982)Evolution and the Theory of Games. Cambridge University Press,
Cambridge.

Meadows, D. H., Meadows, D. L. and Randers, J. (1992)Beyond the Limits. Chelsea Green,
Post Mills, VT.

Meadows, D. L., Behrens III, W. W., Meadows, D. H., Naill, R. F., Randers, J. and Zahn,
E. K. (1974)The Dynamics of Growth in a Finite World. MIT Press, Cambridge, MA.

Mellars, P. (1985) The ecological basis of social complexity in the Upper Palaeolithic of
southwestern France. In T. Douglas-Price and J. A. Brown (eds),Prehistoric Hunter-
Gatherers: The Emergence of Cultural Complexity, pp. 271–297. Academic Press, New
York, NY.

Merz, J. (1996) MICSIM: Concept, developments, and applications of a PC microsimulation
model for research and teaching. In K. G. Troitzsch, U. Mueller, N. Gilbert and J. E.
Doran (eds),Social Science Microsimulation, pp. 33–65. Springer-Verlag, Berlin.

Michalewicz, Z. (1996)Genetic Algorithms + Data Structures = Evolution Programs. 3rd
edn. Springer-Verlag, Berlin.

Michalewicz, Z. and Fogel, D. (2000)How to Solve It: Modern Heuristics. Springer-Verlag,

References 283

Berlin.
Michalski, R., Carbonell, J. and Mitchell, T. M. (1983)Machine Learning: An Artificial

Intelligence Approach. Tioga, Palo Alto, CA.
Mitchell, M. (1998)An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.
Mitton, L., Sutherland, H. and Weeks, M. (eds) (2000)Microsimulation Modelling for

Policy Analysis: Challenges and Innovations. Cambridge University Press, Cambridge.
Möhring, M. (1990)MIMOSE. Eine funktionale Sprache zur Beschreibung und Simulation

individuellen Verhaltens in interagierenden Populationen. Doctoral thesis, Universität
Koblenz.

Molnár, P. (1996) A microsimulation tool for social forces. In K. G. Troitzsch, U. Mueller,
G. N. Gilbert and J. E. Doran (eds),Social Science Microsimulation. Springer-Verlag,
Berlin.

Newell, A. and Simon, H. A. (1976) Computer science as empirical enquiry.Communica-
tions of the ACM, 19: 113–126.

NeXT Corporation (1993)Object Oriented Programming and the Objective C Language.
Addison-Wesley, London.

Nilsson, N. J. (1998)Artificial Intelligence: a new synthesis. Morgan Kaufmann, San
Franscisco, CA.

Oatley, K. (1992)Best Laid Schemes: The Psychology of Emotions. Cambridge University
Press, Cambridge.

Olson, M. (1965)The Logic of Collective Action: Public Goods and the Theory of Groups.
Harvard University Press, Cambridge, MA.

Orcutt, G. H. (1986) Views on microanalytic simulation modeling. In G. H. Orcutt, J. Merz
and H. Quinke (eds),Microanalytic Simulation Models to Support Social and Financial
Policy, Information Research and Resource Reports, vol. 7, pp. 9–26. North-Holland,
Amsterdam.

Orcutt, G. H., Merz, J. and Quinke, H. (eds) (1986)Microanalytic Simulation Models to
Support Social and Financial Policy. Information Research and Resource Reports, Vol.
7. North-Holland, Amsterdam.

Ortony, A., Clore, K. and Collins, A. (1988)The Cognitive Structure of Emotions. Cam-
bridge University Press, Cambridge.

Papert, S. (1980)Mindstorms. Basic Books, New York, NY.
Parisi, D., Cecconi, F. and Cerini, A. (1995) Kin-directed altruism and attachment behaviour

in an evolving population of neural networks. In N. Gilbert and R. Conte (eds),Artificial
Societies: The Computer Simulation of Social Life, pp. 238–251. UCL Press, London.

Park, S. K. and Miller, K. W. (1988) Random number generators: Good ones are hard to
find. Communications of the ACM, 31: 1192–1201.

Pidd, M. (1984)Computer Simulation in Management Science. Wiley, Chichester.
Pugh III, A. L. (1976)DYNAMO User’s Manual. MIT Press, Cambridge, MA.
Punch, K. F. (2000)Developing Effective Research Proposals. Sage, London.
Ramanath, A. M. and Gilbert, N. (2004) Techniques for the construction and evaluation

of participatory simulations.Journal of Artificial Societies and Social Simulation, 7.
http://www.soc.surrey.ac.uk/JASSS/7/4/1.html.

Redmond, G., Sutherland, H. and Wilson, M. (1998)The Arithmetic of Tax and Social
Security Reform: A User’s Guide to Microsimulation Methods and Analysis. Cambridge
University Press, Cambridge.

Reeves, C. R. (1993) Using genetic algorithms with small populations. In S. Forrest (ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms, University of

284 References

Illinois at Urbana-Champaign, pp. 92–99. Morgan Kaufmann, San Mateo, CA.
Resnick, M. (1994)Turtles, Termites and Traffic Jams: Explorations in Massively Parallel

Microworlds. MIT Press, Boston, MA.
Reynolds, R. (1994) Learning to cooperate using cultural algorithms. In N. Gilbert and J. E.

Doran (eds),Simulating Societies: The Computer Simulation of Social Phenomena, pp.
223–244. UCL Press, London.

Rockloff, M. J. and Latańe, B. (1996) Simulating the social context of human choice.
In K. G. Troitzsch, U. Mueller, N. Gilbert and J. E. Doran (eds),Social Science
Microsimulation. Springer-Verlag, Berlin.

Rosenbloom, P. S., Laird, J. E. and Newell, A. (eds) (1993)The Soar Papers: Research on
Integrated Intelligence. MIT Press, Cambridge, MA.

Rubinstein, R. Y. and Melamed, B. (1998)Modern Simulation and Modeling. Wiley Inter-
science, New York, NY.

Rumelhart, D. and McClelland, G. (1986)Parallel Distributed Processing. MIT Press,
Cambridge, MA.

Sauerbier, T. (2002) UMDBS — a new tool for dynamic microsimulation.Journal of
Artificial Societies and Social Simulation, 5/2/5. http://jasss.soc.surrey.ac.
uk/5/2/5.html.

Sawyer, R. K. (2001) Emergence in sociology: Contemporary philosophy of mind and some
implications for sociological theory.American Journal of Sociology, 107: 551–585.

Sawyer, R. K. (forthcoming)Social emergence: Societies as complex systems. Cambridge
University Press, New York, NY.

Schelling, T. C. (1971) Dynamic models of segregation.Journal of Mathematical Sociology,
1: 143–186.

Schmidt, B. (1987)Model Construction with GPSS-FORTRAN Version 3. Springer-Verlag,
New York, NY.

Scriven, M. (1969) Explanation and prediction as non-symmetrical. Explanation and predic-
tion in evolutionary theory. In L. I. Krimerman (ed.),The Nature and Scope of Social
Science. A Critical Anthology, pp. 117–125. Appleton-Century-Crofts, New York, NY.
First published in 1959 inScience130: 477–482.

Shoham, Y. (1990) Agent-oriented programming.Artificial Intelligence, 60: 51–92.
Simon, H. A. (1996)The sciences of the artificial. MIT Press, Cambridge, MA, London.
Smith, R. G. and Davis, R. (1981) Frameworks for cooperation in distributed problem

solving.IEEE Transactions on Systems Man Cybernetics, SMC-11: 61–70.
Sola Pool, I. d. and Abelson, R. P. (1962) The simulmatics project. In H. Guetzkow (ed.),

Simulation in Social Science: Readings, pp. 70–81. Prentice Hall, Englewood Cliffs,
NJ. Originally in Public Opinion Quarterly 25, 1961, 167-183.

Sole, R. and Goodwin, B. (2002)Signs of Life: How Complexity Pervades Biology. Basic
Books, New York, NY.

Statistisches Bundesamt (ed.) (2001)Statistisches Jahrbuch der Bundesrepublik Deutsch-
land. Metzler, Wiesbaden.

Steels, L. and Brooks, R. (1995)The Artificial Life Route to Artificial Intelligence. Lawrence
Erlbaum, Hillsdale, NJ.

Sterman, J. D. (2000)Business Dynamics: Systems Thinking and Modeling for a Complex
World. With CD-ROM. McGraw-Hill, New York, NY.

Stroustrup, B. (1993)The C++ Programing Language. 2nd edn. Addison-Wesley, London.
Suchman, L. A. (1987)Plans and Situated Action. Cambridge University Press, Cambridge.
Sun, R. (ed.) (2005)Cognition and Multi-Agent Interaction: From Cognitive Modeling to

References 285

Social Simulation. Cambridge University Press, Cambridge.
Sutherland, H. (2001) Euromod: An integrated european benefit-tax model. Techni-

cal report, EUROMOD.http://www.econ.cam.ac.uk/dae/mu/publications/
em901_cov.pdf.

Swingler, K. (1996)Applying Neural Networks: a Practical Guide. Academic Press, Lon-
don.

Taber, C. S. and Timpone, R. J. (1996)Computational modeling. Quantitative applications
in the social sciences 113. Sage, Thousand Oaks ; London.

Todd, P. M. (1997) Searching for the next best mate. In R. Conte, R. Hegselmann and
P. Terna (eds),Simulating Social Phenomena. Springer-Verlag, Berlin.

Toffoli, T. and Margolus, N. (1987)Cellular Automata Machines. MIT Press, Cambridge,
MA.

Troitzsch, K. G. (1994) The evolution of technologies. In J. E. Doran and N. Gilbert (eds),
Simulating Societies: The Computer Simulation of Social Phenomena, pp. 41–62. UCL
Press, London.

Troitzsch, K. G. (1996) Chaotic behaviour in social systems. In R. Hegselmann and H.-O.
Peitgen (eds),Modelle sozialer Dynamiken. Ordnung, Chaos und Komplexität, pp. 162–
186. Ḧolder-Pichler-Tempsky, Wien.

Troitzsch, K. G. (1997) Social simulation – origins, prospects, purposes. In R. Conte,
R. Hegselmann and P. Terna (eds),Simulating Social Phenomena, Lecture Notes in
Economics and Mathematical Systems, Vol. 456, pp. 41–54. Springer-Verlag, Berlin.

Troitzsch, K. G. (2004a) A multi-agent model of bilingualism in a small population. In
H. Coelho, B. Espinasse and M.-M. Seidel (eds),5th Workshop on Agent-Based Simu-
lation, pp. 38–43. SCS Publishing House, Erlangen, San Diego, CA.

Troitzsch, K. G. (2004b) Validating simulation models. In G. Horton (ed.),18th European
Simulation Multiconference: Networked Simulation and Simulated Networks, pp. 265–
270. SCS Publishing House, Erlangen, San Diego, CA.

Troitzsch, K. G., Mueller, U., Gilbert, N. and Doran, J. E. (eds) (1996)Social Science
Microsimulation. Springer-Verlag, Berlin.

Van West, C. R. (1994)Modeling Prehistoric Agricultural Productivity in Southwestern
Colorado: a GIS Approach. Doctoral thesis, Washington State University, Pullman.

Varela, F. J., Thompson, E. and Rosch, E. (1991)The Embodied Mind: Cognitive Science
and Human Experience. MIT Press, Cambridge, MA.

Waldrop, M. (1992)Complexity: The Emerging Science at the Edge of Chaos. Simon &
Schuster, New York, NY.

Watkins, J. W. (1955) Methodological individualism: a reply.Philosophy of Science, 22:
58–62.

Weidlich, W. (1972) The use of statistical models in sociology.Collective Phenomena, 1:
51–59.

Weidlich, W. (1991) Physics and social science – the approach of synergetics.Physics
Reports, 204: 1–163.

Weidlich, W. and Haag, G. (1983)Concepts and Models of a Quantitative Sociology. The
Dynamics of Interacting Populations. Springer Series in Synergetics, Vol. 14. Springer-
Verlag, Berlin.

Weisbuch, G., Kirman, A. and Herreiner, D. (1997) Market organisation. In R. Conte,
R. Hegselmann and P. Terna (eds),Simulating Social Phenomena, pp. 221–240.
Springer-Verlag, Berlin.

Werner, G. M. and Davis, J. N. (1997) Cooperation without memory. In R. Conte, R. Hegsel-

286 References

mann and P. Terna (eds),Simulating Social Phenomena, pp. 179–185. Springer-Verlag,
Berlin.

Wilensky, U. (1998) Netlogo rumor mill model. Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.http://ccl.
northwestern.edu/netlogo/models/RumorMill.

Winograd, T. and Flores, F. (1986)Understanding Computers and Cognition. Ablex, Nor-
wood, NJ.

Winston, P. H. (1992)Artificial Intelligence. Addison Wesley, Reading, MA.
Wirrer, R. (1997)Koedukation im R̈uckblick. Die Entwicklung der rheinland-pfälzischen

Gymnasien vor dem Hintergrund pädagogischer und bildungspolitischer Kontroversen.
Blaue Eule, Essen.

Wolfram, S. (1986)Theory and Applications of Cellular Automata. World Scientific, Sin-
gapore.

Wolfram, S. (2002)A new kind of science. Wolfram Media, Champaign, IL.
Wooldridge, M. and Jennings, N. R. (1995) Intelligent agents: theory and practice.Knowl-

edge Engineering Review, 10: 115–152.
Wray, R. E. and Jones, R. M. (2005) An introduction to soar as an agent architecture.

In R. Sun (ed.),Cognition and Multi-Agent Interaction: From Cognitive Modeling to
Social Simulation. Cambridge Univerity Press, Cambridge.

Wright, I. (1996) Reinforcement learning and animat emotions. Technical Report CSRP-
96-4, University of Birmingham School of Computer Science.

Zeigler, B. P. (1985)Theory of Modelling and Simulation. Krieger, Malabar. Reprint, first
published in 1976, Wiley, New York, NY.

Zwicker, E. (1981)Simulation und Analyse dynamischer Systeme in den Wirtschafts- und
Sozialwissenschaften. De Gruyter, Berlin.

Author index

Institutions
CACI Products Company 86, 276
NeXT Corporation 181, 283
Statistisches Bundesamt 66, 284

A
Abelson, R. P. 6, 7, 275, 284
Agre, P. E. 176, 275
Ahrens, J. H. 273, 275
Alvin, P. 20, 275
Amblard, F. 277
an der Heiden, U. 103, 275
Anderson, J. R. 209, 275
Antcliff, S. 65, 66, 98, 275
Archer, M. 11, 275
Arnold, K. 181, 275
Asakawa, T. 279
Axelrod, R. 4, 19, 25, 26, 142, 145, 213,

215, 233, 234, 239, 275
Axtell, R. . . . 12, 20, 26, 191, 197, 278

B
Babloyantz, A. 103, 275
Bak, P. 10, 276
Balci, O. 22, 276
Banks, J. 99, 276
Banzhaf, W. 255, 276
Beck, K. 211, 276
Beckmann, K. 280
Behrens III, W. W. 282
Beltratti, A. 253, 254, 276
Berlekamp, E. 131, 133, 276

Bernstein, A. 7, 275
Bond, A. H. 172, 276
Booch, G. 205, 276
Box, G. 25, 276
Brajnik, G. 53, 276
Bratley, P. 99, 274, 276
Bremer, S. A. 55, 276
Brooks, R. 175, 176, 276, 284
Brown, L. 65, 276
Bunge, M. 30, 79, 100, 102, 276

C
Caldwell, S. B. 65, 276
Cangelosi, A. 176, 225, 276
Carbonell, J. 283
Carr, E. P. 281
Castelfranchi, C. 11, 277
Cecconi, F. 283
Cerini, A. 283
Chaib-draa, B. 172, 276
Chapman, D. 176, 275
Chattoe, E. 235, 249, 250, 254, 276, 277
Chen, P. P. 102, 277
Christiansen, M. 225, 277
Chung, C. A. 99, 277
Citro, C. F. 78, 277
Clore, K. 283
Cohen, M. 278
Collins, A. 283
Conte, R. . . . ix, 11, 20, 173, 277, 279
Conway, J. 276

288 Author index

Corbara, B. 277
Creedy, J. 77, 277

D
Davis, J. N. 33, 285
Davis, R. 176, 284
Deb, K. 237, 279
Deffuant, G. 129, 169, 277
Deutsch, K. W. 53, 277
Dieter, U. 273, 275
Doran, J. E. ix, 9, 15, 18, 20, 52,

195–197, 277, 279, 285
Drogoul, A. . . . 11, 193–195, 277, 278
Duncan, A. S. 77, 277
Durkheim, E. 11, 278

E
Eason, R. J. 73, 278
Edmonds, B. 279
Eiben, A. E. 254, 278
Eichenberger, R. 2, 278
Eigen, M. 35, 278
Elster, J. 12, 231, 232, 278
Epstein, J. M. 12, 20, 26, 191, 197, 278
Etienne, M. 207, 278

F
Faure, T. 277
Ferber, J. 11, 193, 194, 197, 278
Finin, T. 282
Fisher, M. 182, 278
Flores, F. 12, 286
Fogel, D. 253, 254, 278, 282
Fogel, L. 253, 278
Foley, D. 20, 275
Forrester, J. W. 28, 45, 54, 278
Fowler, M. 208, 278
Fox, B. L. 276
Francone, F. D. 276
Frey, B. S. 2, 278

G
Galler, H. P. 66, 75, 278
Gamble, C. 195, 278
Garson, G. D. 254, 278
Gasser, L. 172, 276
Gazdar, G. 176, 278
Gilbert, N. ix, 12,

15, 16, 19, 20, 52, 214–216, 235, 249,
250, 276–279, 283, 285

Goldberg, A. 181, 279
Goldberg, D. 237, 279
Goldspink, C. 212, 279
Goodwin, B. 10, 284
Gosling, J. 181, 275
Graham, P. 181, 279
Grünbaum, A. 123, 279
Gurney, K. 253, 279
Guy, R. 276

H
Haag, G. 103, 128, 285
Haken, H. 103, 116, 128, 279
Hales, D. 212, 213, 279
Hamilton, W. 227, 279
Hanneman, R. A. 55, 279
Hanushek, E. A. 78, 277
Harding, A. 8, 65, 76, 276, 279
Hare, M. 214, 215, 279
Hauser, R. 64, 73, 75, 77, 280
Hayes-Roth, F. 5, 280
Hazlehurst, B. 177, 222–225, 280
Hegselmann, R. . . 147, 148, 277, 280
Heike, H.-D. 65, 280
Helbing, D. 116, 128, 280
Henize, J. 101, 280
Herreiner, D. 285
Hochmuth, U. 280
Hochschild, A. 177, 280
Holland, J. H. . 218, 251, 252, 255, 280
Holyoak, K. J. 280
Hughes, B. B. 53, 55, 280
Huhns, M. 172, 280
Hunter, J. 276
Hunter, W. 276
Hurford, J. R. 176, 225, 280
Hutchins, E. 177, 222–225, 280

I
Ilachinski, A. 170, 280

J
Jacobson, I. 276
Jager, W. 199, 208, 280
Jakeman, A. 279
Jennings, N. R. 173, 286
Jones, R. M. 209, 286
Jurafsky, D. 178, 280

Author index 289

K
Karlin, S. 86, 281
Kauffman, S. 10, 281
Kaufmann, A. 280
Keller, R. E. 276
Kheir, N. A. 79, 99, 281
Kirby, S. 225, 277
Kirman, A. 285
Klee, A. 107, 281
Kl ösgen, W. 59, 281
Kl üver, J. 253, 281
Knight, C. 280
Knuth, D. E. 273, 281
Kohler, T. A. 18, 281
Kolesar, P. 6, 281
Kontopoulos, K. M. 11, 281
Koza, J. 249, 250, 255, 281
Kraul, M. 117, 281
Kreutzer, W. 82, 86, 98, 102, 281
Kuipers, B. 52, 56, 281

L
Labrou, Y. 282
Laird, J. E. 209, 281, 284
Lalande, S. 277
Lambert, S. 65, 281
Langton, C. G. 281
Lansing, J. S. 12, 281
Latańe, B. . . . 148, 150, 151, 282, 284
Lave, C. A. 201, 282
Lebiere, C. 209, 275
Lenat, D. 280
Letcher, R. 279
Lewis, G. H. 78, 282
Lines, M. 53, 276
Lomborg, B. 234, 282
Lumsden, C. J. 107, 129, 282
Lyapunov, A. 270

M
Maes, P. 172, 282
Malerba, F. 203, 282
Maltby, S. 279
Mandiau, R. 276
March, J. G. 201, 282
Margarita, S. 276
Margolus, N. 9, 169, 285
Martin, J. H. 178, 280
Martinez Coll, J. C. 32, 282

Matsumoto, M. 274, 282
Maturana, H. 12, 282
Mayfield, J. 176, 282
Maynard Smith, J. 32, 282
McClelland, G. 253, 284
Meadows, D. H. 6, 45, 55, 282
Meadows, D. L. . . . 6, 30, 45, 54, 282
Melamed, B. 99, 284
Mellars, P. 195, 277, 282
Mellish, C. 176, 278
Merz, J. 65, 282, 283
Michalewicz, Z. . . 218, 252, 254, 282
Michalski, R. 9, 283
Michel, R. C. 78, 282
Miller, K. W. 274, 283
Millot, P. 276
Mitchell, M. 254, 283
Mitchell, T. M. 283
Mitton, L. 76, 78, 283
Molnár, P. 180, 283
Moulin, B. 276
Mueller, U. 285
Möhring, M. 129, 283

N
Naill, R. F. 282
Nelson, R. 282
Newell, A. 178, 281, 283, 284
Nilsson, N. J. 198, 283
Nisbett, R. E. 280
Nishimura, T. 274, 282
Nordin, P. 276

O
Oatley, K. 177, 283
Olson, M. 232, 283
Orcutt, G. H. 8, 59, 76, 283
Orsenigo, L. 282
Ortony, A. 177, 283
Ott, N. 280
Owens, A. 278

P
Page, C. L. 278
Pahl-Wostl, C. 279
Palmer, M. 196, 277
Papert, S. 151, 283
Parisi, D. 176, 225, 226, 235, 276, 283
Park, S. K. 274, 283

290 Author index

Paul, S. 281
Percival, R. 281
Pidd, M. 99, 283
Popping, R. 280
Pugh III, A. L. 54, 283
Punch, K. F. 201, 283

Q
Quinke, H. 283

R
Ramanath, A. M. 214, 283
Randers, J. 282
Redmond, G. 77, 283
Reeves, C. R. 239, 283
Resnick, M. 151, 284
Reynolds, R. 231, 253, 284
Ritz, H. 280
Rockloff, M. J. 150, 151, 284
Rosch, E. 285
Rosenbloom, P. S. 209, 281, 284
Rouchier, J. 279
Rubinstein, R. Y. 99, 284
Rumbaugh, J. 276
Rumelhart, D. 253, 284

S
Sande, H. v. d. 280
Sauerbier, T. 65, 280, 284
Sawyer, R. K. 11, 284
Schelling, T. C. 24, 146, 284
Schmidt, B. 86, 284
Schofield, D. 281
Schrage, L. E. 276
Schuster, P. 35, 278
Schwarze, J. 280
Scott, K. 208, 278
Scriven, M. 123, 284
Shoham, Y. 174, 284
Simon, H. A. 1, 178, 283, 284
Singh, M. P. 172, 280
Smith, J. E. 254, 278
Smith, R. G. 176, 284
Sola Pool, I. d. 6, 284
Sole, R. 10, 284
Steels, L. 175, 284
Sterman, J. D. 55, 284
Stroustrup, B. 181, 284
Studdert-Kennedy, M. 280

Suchman, L. A. 176, 284
Sun, R. 216, 284
Sutherland, H. 76, 283, 285
Swingler, K. 228, 253, 285

T
Taber, C. S. 5, 285
Taylor, H. M. 86, 281
Terna, P. 216, 276, 277, 279
Thagard, P. R. 280
Thompson, E. 285
Timpone, R. J. 5, 285
Todd, P. M. 2, 4, 285
Toffoli, T. 9, 169, 285
Troitzsch, K. G. 6, 7, 35, 98, 107, 123,

126, 129, 281, 285

V
Van West, C. R. 18, 281, 285
Varela, F. J. 12, 282, 285

W
Wagner, G. 280
Waldrop, M. 1, 10, 285
Walker, W. 6, 281
Walsh, M. 278
Waterman, D. 280
Watkins, J. W. 11, 285
Weeks, M. 283
Weidlich, W. 103, 107, 128, 285
Weisbuch, G. 15, 277, 285
Werner, G. M. 33, 285
Wilensky, U. 152, 286
Wilson, E. O. 107, 129, 282
Wilson, M. 283
Winograd, T. 12, 286
Winston, P. H. 198, 286
Winter, S. 282
Wirrer, R. 117, 281, 286
Wolfram, S. 136, 170, 286
Wooldridge, M. . . . 173, 182, 278, 286
Wray, R. E. 209, 286
Wright, I. 177, 286

Z
Zahn, E. K. 282
Zeigler, B. P. 15, 99, 286
Zwicker, E. 51, 286

Subject index

A
abstraction 16
acquired characteristics 231
activation 219–225, 227
actor 130, 142–150, 231, 235
adaptation 231
age structure . . 4, 53, 57, 58, 60, 61, 74
agency 173, 223, 262
agenda 80
agent 3, 6, 9, 12, 13, 20, 25,

27, 172–182, 189–197, 218, 222–227,
233–235, 249, 250, 253, 258

alliance 137, 142, 143, 145, 196
altruistic behaviour 222
analogy 142, 217, 230
animation 26
ant 11, 176, 193–195
AnyLogic 86, 87
architecture 258
array 3, 88, 130
art 59, 195, 227
artificial intelligence . . . 8, 9, 13, 172,

176–178, 198
artificial neural network 217, 219, 226,

253, 254
artificial society 5, 20, 191
assumption 3, 6, 10, 11, 18, 19, 23, 26,

82, 117, 123, 124, 139, 146, 196
attitude . 100, 102, 114, 115, 130, 137,

148
attributes 2,

22, 25, 28–30, 53, 59, 61, 63, 65, 79,
80, 100–102, 108–112, 120, 127, 150,
151, 174, 175, 223, 231, 248

auto-associator 224
automaton 130, 172
autonomy 190
autopoietic 12

B
backpropagation 221, 226
behaviour 1–4, 10, 11,

13, 15, 19, 20, 23–26, 42, 44, 60, 82,
86, 101, 102, 115, 116, 121, 130, 149,
172, 173, 175, 226, 227, 253

belief 173–175, 190, 197, 253
biology 1, 12, 128, 131, 217, 230
birth rate 47
browser 256, 257
bucket brigade 251

C
C 22, 25, 31, 78, 81, 89, 129, 137
C++ 22, 65, 76
cast 23, 253
cause . . . 10, 150, 174, 177, 231, 234
cave . 195
cellular automaton 9, 12, 13,

25, 130, 131, 136, 142, 145, 147, 149,
151, 169, 170, 181, 191, 193, 264

chromosome 231, 233, 235, 236, 238,
239, 248, 249, 252

292 Subject index

class . . . 68, 69, 72, 73, 111, 180, 218
coding 21, 233, 238, 248
cognition 9
communication . 13, 20, 176, 181, 196,

222
community 22
complexity theory 1, 11, 260
concurrency 181
condition–action rule 175
confidence interval 25
conflict 32, 175, 179
consensus 222, 223
consumer 116
context 75, 115, 178, 181, 192
continuous time 29
cooperation 103, 232, 234, 249
crossover 233, 238, 249, 250, 252
crowding 47, 48
customer 15, 80–85, 89, 97

D
data collection 59
death rate 48
debugging 19, 21
demography 57, 58
desire . 18
difference equation 6, 28, 29, 35
differential equation . . 29, 35, 36, 106,

125
discovery 6
discrete event model 98
discrete event simulation 82, 97, 98, 263
distance law 150
distributed artificial intelligence 9, 172,

173, 193
distribution 3, 8, 22–25,

33, 42, 60, 65, 66, 71, 73, 80, 82, 84,
86, 100, 103–107, 115, 117, 123, 140,
144, 191, 192, 196, 249, 256, 272, 273

dynamic microsimulation 73
dynamic object 98
dynamics 4, 6, 8, 13, 16, 18, 28–31, 39,

45, 53, 58, 74, 79, 130, 143, 145, 170

E
economy 59, 263
education 33, 58, 61, 63
efficiency 59, 235
electronic journal 26, 260

emergence 1, 11–13, 130, 142, 145, 191
emotion 25, 173, 177
emPlant 86, 264
encoding 223, 249, 253
entities 79, 84, 142
entity 177
environment 15, 21,

23, 100, 101, 111, 172–174, 176, 177,
179, 181, 182, 190, 191, 193, 194, 196,
197, 217–219, 230, 231, 263

equilibrium 12, 35, 37, 106
error . 22, 71, 108, 221, 222, 224, 226,

229
ethology 12
EUROMOD 76
event 6, 58, 65, 79–84, 86, 89, 114, 131,

145, 182, 259, 272, 273
evolution 148, 178, 191, 230, 231, 239,

247, 252, 253
evolutionary computation 230
evolutionary programming 252
exogenous factors 25
experiment . 4, 6, 14, 86, 115, 127, 128,

151, 191, 195–197
experimental method 26
Extend 86

F
fashion 140, 141, 181, 223
fertility rate 57
fitness 218, 231, 233, 235–238
flexibility 104
food 47, 174, 175, 194, 218, 226, 227,

230, 249
forecasting 5, 6, 17
formalization 5, 126

G
game 5, 129, 231–234, 249, 260
gender 100, 117, 118, 122, 123
gene 218, 230, 231, 236, 238, 239, 248,

249, 252
general-purpose language . . 59, 65, 87
general-purpose programming language

. 86
genetic algorithm . 226, 230, 231, 235,

237, 254, 266
genetic operator 238
genetic programming . . 249, 255, 266

Subject index 293

genome 231
goal 20, 26, 55, 175–177, 179, 192, 194
gossip 9, 131, 137–139, 142
government 12, 24, 60, 78, 142
GPSS . 86
grammar 225
graphics 21, 22
grid . . 9, 12, 130, 131, 133–135, 142,

146–150, 181, 191, 193, 220, 228

H
handwriting recognition 228
hidden layer 221, 223, 227, 228
hierarchy 180, 196, 197
history . . . 10, 23, 125, 127, 142, 143
hypothesis 178

I
induction 26
inference 174
influence . . . 30, 32, 58, 104, 136, 148
initial conditions 16, 18, 19, 23, 24, 44
initialization 31, 32, 44, 109–111, 120,

127, 128
innovation 64, 138
instance 11,

17, 57, 61, 80, 88, 109–111, 119–121,
137, 146, 149, 180, 181, 222, 252, 274

instantiation 180
institution 11, 12
intelligence 9, 178
intention 8, 176
intentionality 173, 174
interaction 8, 9, 11–13, 53, 63,

82, 101, 102, 128, 130, 131, 142, 143,
148, 149, 176, 224, 226, 227

inverse power law 148
irrigation 12
iterated prisoner’s dilemma 232

J
Java 22, 111, 257

K
kinship 59, 74
knowledge . 1, 6, 9, 20, 25, 52, 86, 174,

178, 190, 195
knowledge representation . . 175, 190,

195, 198

L
landscape 12, 190–193
language . . 13, 21, 22, 29, 31, 54, 76,

87, 102, 107, 110, 128, 173, 176–178,
180, 181, 222, 226, 256, 258, 262

learning 9, 13, 174, 178, 217, 218, 230,
234, 258

learning classifier systems 251
learning rate 222
level . 1,

11, 13, 18, 28, 31, 32, 38, 42, 48, 49,
53, 57–59, 65, 71, 100, 101, 103, 124,
125, 128, 129, 142, 150, 175, 177, 182,
191, 193, 194, 224, 229, 249, 258

lexicon 222, 223, 226
linear . 10, 37, 49, 106, 115, 134, 228,

273
linear stability 35
Lisp . 22
logic 15, 17, 18, 175
Lyapunov function 270

M
Macintosh 31, 259
macro 13, 55, 57, 75, 106, 124, 129, 142
macro model . . 57, 58, 124, 126, 128
macro-level 142
majority model 141
market . 12, 15, 25, 64, 181, 192, 222,

254
market-clearing 192
Markov 86
Markov process 86
marriage 2, 59, 63, 74, 75
master equation 105, 107
mathematical analysis 44, 128
mathematics 5, 6, 15, 131
mating 236
mechanism 47, 128, 233
memory 178, 179
metaphor 11, 80, 147, 252
method . 10, 15, 16, 25, 26, 55, 75–77,

180, 218, 273
methodology 14
micro 11, 20, 58, 75, 125, 257
micro-level 142
microanalytical simulation 58, 60, 76,

101

294 Subject index

microdata 59, 60, 65, 69, 72, 74
microsimulation . 8, 27, 57–61, 64, 68,

72, 73, 75–78, 100, 261, 262
migration 146, 148
migration model 146, 147
MIMOSE 100, 102, 107–111, 115, 117,

119, 121, 123–125, 127, 128, 256, 257
mind 18, 23, 26, 36, 123, 127, 174, 238
model . 2,

4–6, 8–10, 12–28, 30, 32, 33, 35, 37,
38, 42–45, 47, 50–55, 58–61, 63–65,
70, 71, 74–87, 90, 100–104, 106–109,
111, 113, 115–117, 121–128, 130, 131,
134, 135, 137–151, 173–178, 190–
194, 196, 197, 217–219, 222, 223,
225–227, 230, 231, 234, 235, 249,
252–254, 256–259, 262, 264

momentum 222, 227
multi-agent system 9, 197, 259
multilevel modelling 101
multilevel simulation 123
mutation 226, 233, 238, 239, 248, 249,

252, 253

N
neighbourhood . 9, 131, 134, 146, 148,

181
NetLogo 182
neuron 217

O
object 11, 14, 20, 30, 53, 59, 79, 80, 85,

89, 100–102, 106, 108–115, 121, 122,
127, 128, 175, 177, 179, 180, 193, 222

object orientation 178
object-oriented 75, 180
Objective C 258
OpenStep 111
opinion 17, 102–105, 116, 149
opinion formation . 103, 104, 113, 129
order of service 85
organism 12, 230

P
paradigm 55, 178
parallel processes 5
Pascal . 21
PASCAL 98
philosophy 11

planning 54, 176, 178, 196, 264
population . 3, 4, 8, 23, 33, 34, 36–38,

42, 45, 47, 49–51, 55, 57–61, 67, 71,
74, 100–107, 113–116, 119, 123, 124,
129, 195, 196, 217, 218, 223, 230, 231,
233–239, 249, 252

prediction 6, 11, 17–20, 23, 27, 58–60
prisoner’s dilemma 232, 233
process orientation 82
process-oriented 89
production system 178–180, 198
production systems 250
programming language . 5, 21, 22, 102,

274
property 5, 11, 59
pseudo-random number 19, 25
Puebloan settlement 18

Q
qualitative differential equation . . . 52
qualitative simulation 56
queue . 6, 80–86, 88, 89, 91, 92, 97, 98
queuing model 87

R
random number 8, 22, 25, 82, 89, 111,

114, 124, 138, 150, 249, 273, 274
random number generator 83, 110, 137,

138
rate 2, 4, 5, 24, 28, 30–32,

35, 38, 47, 48, 51, 53, 57, 60, 63, 66,
70, 71, 75, 84–86, 100, 105, 124, 138,
191, 192, 227, 229, 235, 239

rational action 231
rationality 12
reactivity 190
representation 18, 52, 71, 79, 102, 107,

111, 222–224, 228, 247, 248, 250, 253
reproduction 218, 227, 230
resources 24, 32, 33, 37, 47, 87, 88, 91,

143, 196, 197, 225, 226, 230
retrodiction 23, 51, 123
robot . 179
robustness 24
rule 9, 10, 72, 129–132, 134–143, 146,

147, 149, 170, 178–180, 191, 192, 196,
228, 233, 239, 259

Subject index 295

S
segregation 24, 117, 130, 133, 146, 147
sensitivity analysis 24, 27
sensor 181
server 81, 82, 85, 86
SIMPLE++ 86, 264
SIMPLEX 86
SIMPROCESS 86, 92
SimScript 86, 87, 263, 274
sink 39, 82, 84
slot . 180
Smalltalk 22
social complexity 23, 195
social impact 148, 149
sociology 12, 128
sociophysics 103
software package 107, 257
source . . 30, 39, 60, 82, 172, 175, 254,

258, 266, 273
specification . . . 5, 15, 16, 21, 86, 107
speech 222
state space 44
state variable 36, 79
statistical . 2, 10, 16–18, 25, 66, 68, 71,

80, 81, 86, 192, 262
statistics 8, 63, 66, 68, 69
step 16, 18, 19, 22, 32,

53, 59, 61, 62, 68, 69, 75, 79, 80, 100,
102, 108, 111, 112, 114, 115, 118, 120,
125, 131–136, 138, 140–144, 182, 222

stochastic 58, 84, 85, 107, 115, 137, 273
structure 2, 15, 20, 59–61, 103, 175, 180
Swarm 257
symbol . . 29, 178, 222–225, 252, 253
synergetics 9, 103, 113, 128, 129
system dynamics . 6, 13, 29, 30, 39, 45,

53–55, 57, 58, 261

T
target . . 15, 16, 18–20, 23, 24, 27–30,

53, 55, 57, 58, 82, 102, 108, 139, 143,
177, 229

tax . 24, 54, 57, 60, 66, 68–73, 76, 262
tax law 69, 72, 101
taxation 71
theory 3, 5, 9–12, 17, 22, 129, 137, 148,

150, 192, 227, 230
tolerance 146, 147

toolbox 76
toolkits 21
tractability 52
training . . . 5, 221, 223, 224, 227–229

U
understanding . 1, 2, 10, 11, 13, 17, 18,

24, 26, 178, 221
uniform . 24, 90, 91, 121, 131, 191, 273
uniform random number 124, 273

V
validation 23
variable . . . 2, 6, 10, 15, 18, 19, 21, 49,

52, 57, 58, 68, 74, 104, 115, 120, 122,
128, 175, 249, 250, 272, 273

verbal input/output layer 224
verification 20, 22–24, 197
visual representation 44

W
waiting time 6, 85, 91, 98, 127
welfare function 192
workflow 79, 97, 98, 172

	Cover
	Half title
	Title
	Copyright
	Contents
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Appendix A
	Appendix B
	Appendix C
	References
	Author index
	Subject index

